Doc No: X3J16/96-0132 W321/ N0950
Dat e: July 5th, 1996
Project: Programm ng Language C++
Ref Doc:
Reply to: Josee Lajoie

(j osee@net.ibmcom

extern "LANG' Linkage |ssues and Proposed Resol utions

i ssue 78: Do |inkage specifications affect pointers to function and
========= function typedefs?

The di scussions on the core reflector have confirned ny belief that
there are only 4 solutions to choose from [Details on proposals 1),
2) and 3) may be found in Annex A bel ow.]

Proposal 1) extern "C' affects function types.
This was presented at the Monterey neeting and rejected.

Pr os:

[Mke MIler in core-6880:]
In spite of the caution against "extending the |inkage concept
to be an integral part of the type system taking part in
overl oadi ng resol ution, and so on" that appear in the ARM
(p. 118), | continue to think that it is the cleanest, sinplest
way to support the exanple i mediately preceding those
cautionary words:

\

extern "C' typedef int (*CF)(int);
voi d func(CF fp);

(This exanple is, BTW the primary gui dance peopl e have had for
the past 6 years about howto mix C and C++ functions and
function pointers; a proposal that used a different syntax woul d
have to be pretty conpelling to override that precedent, 1'd

t hi nk.)

VVVVVVVVYVVYVYVVYV

Cons:
This is too big of a change to be acceptable at this | ate stage
in the standardi zation process.

Proposal 2) the senmantics of extern "C' nminmic those for exception
speci fications.

That is, try to come as close as possible to the semantics provided
by solution 1) without saying that extern "C' affect function types.
This was di scussed at the Santa Cruz neeting by Core 1 and

rej ected.

Pr os:
This solution corresponds to existing practice in the C++ draft
standard and mat ches what was previously decided for exception
speci fications.

[Bill G bbons in core-6895:]

> This solution maxim zes conpatibility with existing code and

> provides the greatest possible checking w thout using the type
> system

Cons:
[Jason Merrill in core-6877:]
> This solution does not correspond to existing practice in the
> DOS worl d, which uses additional declspecs for encoding the

calling convention into the pointer type.

Al so, adopting this option would still nmean new syntax, since
"extern "C'' cannot appear in a paraneter-declaration, and
presumably you would prohibit it frombeing applied to typedefs,
as is the case with exception specifications.

VVVYVYVYV

Jason’s last comment, the fact that this solution does not

support the typedef exanple fromthe ARM which is, as Mke MIler
poi nts out "the prinmary gui dance people have had for the past 6
years about how to nix C and C++ functions and function pointers"
is the inmportant weakness of this solution

Solution 3) extern "C' only affects function declarators.

That is, extern "C' does not affect function types referred to by
typedefs and pointers to functions. This is what the WP currently

i mplies.

pros:
This is the current status quo of the C++ draft, why change it?

cons:
This solution is uninplenentable on some platfornms (IBM 390
mai nfrane systens, and | believe either Cray or Unisys mainfrane
i mpl enent ati ons).

Sone inplenentations will never be able to be standard conformant
because they won't be able to support the follow ng:

i nt conpar(const void*, const void*);

extern "C'" void qgsort(..., int (*)(const void*, const void*));

gsort (..., conpar); //1: solution 3) requires that this call be
11 wel | - forned

On sone inplenmentations, it is not possible to make the call on
line //1 well-fornmed and wel |l -defined. Is it worth nmaking these
i mpl enent ati ons non- st andard conf or mant ?
Sol ution 4) Inplenentation-defined behavi or

That is, the inplementation is free to choose the option it prefers.

Pr os:
This may be a last resource solutions if we cannot build a
consensus on one of the previous 3 solutions.

Cons:

This solution offers the | east anpbunt of guarantees for
portability for C++ prograns.

Proposed Resol uti on:

| prefer 1).

I can live with 4).

I find the need for a | anguage extension in order to support 2)
very unappeal i ng.

I do not believe 3) is a viable option

ANNEX A - Proposal s

Solution 1): extern "C' affects function types

A proposal (95-0122/N0722) | provided for the Monterey neeting
presented sone rules needed if extern "C' was to affect function
types in C++. Here are the rules that were presented. They have been
updated to take into account the questions posted to the reflector
during these |ast few weeks.

1.1 Decl arations

Whi ch function types in a declaration are affected by an extern "C'
I i nkage specification?

A) Exanpl e
extern "C'" void f (void (*pfl) (int));
Does "'pfl refer to a function with C |inkage?

Pr oposal :

If an extern "C' linkage specification applies to a single
declaration, the |inkage specification affects all the function
types introduced by the declaration.

That is, f and pfl both refer to functions with C |inkage.
B) Exanpl e
extern "C' {
void f1 (void (*pf2) (int));

void f2 (void (*pf3) (int));
}

Do 'pf2" and 'pf3 refer to functions with C |inkage?

extern "C' {
struct S {
void nf (void (*pf4) (int));

H
}
Does 'pf4’ refer to a function with C linkage?
Pr oposal :
--;%-gih-éxtern "C' linkage specification applies to a bl ock of

decl arations, the linkage specification affects all the function
types in the declarations enclosed by the extern "C' bl ock.

That is, pf2, pf3 and pf4 all refer to functions with C

I i nkage.

C) Exanpl e

extern "C' typedef void FUNC();
FUNC* pf 5;

Does 'pf5 refer to a function with C or C++ |inkage?
typedef void FUNC(int);
extern "C' {

FUNC * pf 6;
}

Does 'pf6’ refer to a function with C or C++ |inkage?

Pr oposal
If a linkage specification applies to the declaration of a
typedef, the function types in the typedef are said to introduce a
I inkage. A function type declared using a typedef has the
I i nkage i ntroduced by the corresponding function type in the
typedef, if any; otherwi se, the function type has the |inkage of
the |linkage specification that applies to the declaration, if any.

That is, pf5 refers to a function with C linkage and pf6 refers
to a function with C++ |inkage.

1.2 Redecl arations

Since typedefs can introduce |inkage, wording needs to be added to
i ndi cate what happens in the case of redeclarations, if some
decl arations use typedefs that introduce |inkage and sone don’t.

Exanpl e:

extern "C' typedef void FUNC();
FUNC f();
void f(); // is this redeclaration well-formed?

Pr oposal

1) If two declarations for the sanme entity specify |inkage
(either via a typedef or a linkage specification), the |inkage of
the two decl arati ons nust be the sane.

Pr oposed new words:

If, for two declarations of the sane function, object or

ref erence

-- different |inkage-specifications are specified, or

-- one declaration specifies a |linkage-specification and one
uses a typedef that introduces a |inkage and the |inkage
i ntroduced by the Iinkage-specification is different fromthe
I i nkage introduced by the typedef, or

-- the two decl arations uses typedefs and the |inkage
i ntroduced by the two typedefs is different,

the programis ill-formed if the declarations appear in the

sane translation unit, and the one definition rule

(_basic.def.odr_) applies if the declarations appear in

different translation units.

2) A declaration for which no linkage is specified may foll ow
a declaration for which linkage is specified.

Pr oposed new words:
If a declaration for a function, object or reference for which
no linkage is specified follows a declaration for which |Iinkage
is specified (either with a |inkage specification or using a
typedef that introduces |inkage), the Iinkage specified in the
earlier declaration is not affected by the redeclaration.

3) A declaration for which no |inkage is specified cannot precede
a declaration for which linkage is specified.

Pr oposed new words:
If a declaration for a function, object or reference uses a
| i nkage-specification or uses a function typedef that introduce
i nkage, and the |inkage specified by the |inkage-specification
or typedef is not the C++ linkage, such a declaration shall not
precede a declaration for the sanme entity for which no |inkage

is specified (either with a |inkage-specification or using a
typedef that introduces |inkage).

1.3 Function calls

The |inkage information used on a function call is the |inkage
i nformati on associated with the function type of the |val ue
referring to the function. | don't believe the WP needs to specify

any particular rules for this since this falls out of the fact that
linkage is part of function types.

We need to cover the case where the function call does not match
the |inkage specified on the function definition

Pr oposal

Pr oposed new words:
Calling a function through an | val ue whose |inkage is different
fromthat of the function definitionis ill-fornmed, no diagnostic
required.

.4 Pointer assignments/initializations

o Two function types are the sane if the |inkages associated with
the function types are the sane.

o0 No type conversions exi st between a pointer to function with C
I i nkage and a pointer to functions with C++ |inkage.

For assignnents/initializations of pointer to functions to be
wel | -formed, both pointers nust refer to the sane function type,
i.e. both function type nust have the sane |inkage.

Exanpl e
extern "C'" void (*plf) (int);
void (*p2f) (int);
pif = p2f; // ill-formed

Again, | don't believe the WP needs to specify any particular rules
for this since this falls out of the fact that linkage is part of
function types.

.5 Function overl oad resol ution

If a function has a paranmeter that has pointer to function type,

(or any other type compounded by the type pointer to function), then
it is possible to provide an overload for that function that accepts
a paraneter of type "pointer to function with C I|inkage"

Exanpl e [from Fergus Henderson (core-6827)]

extern "C' typedef void c_func(void);
extern "C++" typedef void cpp_func(void);
void foo(c_func *f) { //1

)05

}
void foo(cpp_func *) { //2
(*H)O;

extern "C'" void a_c_func(void) {}

extern "C++" void a_cpp_func(void) {}

int main() {
foo(a_c_func); /1 calls foo online //1
foo(a_cpp_func); // calls foo online //2

return O;

}

Here again, | don't believe the WP needs to specify any particul ar
rules for this since this falls out of the fact that |inkage is part
of function types.

1.6 Tenplate instantiations

If a tenplate argunment has pointer to function type, (or any other
type conpounded by the type pointer to function), then instantiating
the tenplate with an argument of type "pointer to function with C

I i nkage" and with an argunent of type "pointer to function with C++
I i nkage" causes two different tenplate specializations to be

i nstanti at ed.

Exanpl e [from Fergus Henderson (core-6827)]
tenplate <class T> T* foo(T *f) {
(*£))
return O;

}
tenpl ate <class U> bar(const U& const U&) {}

extern "C'" void a_c_func(void) {}
extern "C++" void a_cpp_func(void) {}
int main() {

foo(a_c_func); /1 tenplate argument: C function type
foo(a_cpp_func); /1 tenplate argunent: C++ function type
bar (foo(a_c_func), foo(a_cpp_func)); //1 ill-formed
return O;

}

Line //1 is ill-formed because tenpl ate argunent deduction

fails: the type of the tenplate argument deduced differs whether
the first function argument or the second function argunent is
considered. The tenplate argunent deduced for the first
function argunent is "function with C linkage", and the tenplate
argunent deduced for the second function argunent is "function
with C++ |inkage".

Here again, | don't believe the WP needs to specify any particul ar
rules for this since this falls out of the fact that |inkage is part
of function types.

Solution 2): the semantics of extern "C' nmimc those for exception
———————————— speci fications

[For the text here, | borrow mainly fromBill G bbons’ nessages
core- 6817 and core-6895].

Maki ng |i nkage part of the type systemwas tried and rejected.
Another alternative is to allow |linkage in exactly the same places in
whi ch exception specifications are allowed today, and inpose the sane
restrictions. This requires sone changes to the syntax for declaring
function pointers.

There is currently no way to specify |linkage for a nested function
decl arator and so while you can say:

void f(int (*g)() throwint))

you cannot say:

void f(extern "C" int (*g)()); [// f takes a Clinkage fct ptr param
And sinilarly, you can say:
void (*f())() throwint);

where the "throwint)" applies to the return type of "f", which is a
function pointer.

but you cannot say:

void (extern "C'" *f())(); /1 f returns a C1linkage fct ptr
Since paraneters already have a storage class, that is the obvious
place to allow the linkage specification for paraneters of function
poi nter type.
Return types are harder.
The cl eanest place to allow nested "extern C' specifications for
return types is in the sane place where exception-specifications are
witten. Unfortunately that conflicts with the way "extern C' is
witten today for the top |evel

void (*f())() extern "C'; [// applies to return type due to the way

/1 nested function types are parsed

void f() extern "C'; /1l these two woul d be equival ent

extern "C' void f();
Note that this could also solve the anbiguity in the current syntax:

extern "C'" void (*f)(); /'l does it apply to the ptr or the function?
in this way:

extern "C'" void (*f)(); [/ applies to pointer itself

void (*f)() extern "C'; // applies to function to which pointer refers

It is perhaps a little bizzare to allowthe 'extern "C'" in either
pl ace, but note that this is like the situation with "const" today:

const int (A :*f)(); [l ptr to fct returning const int
int (A:*const f)(); /1 const ptr to function returning int
int (A:*f)() const; /1 ptr to const function returning int

Al ong these lines, the "extern" could be attached to either the
function itself or the function pointer. It seens to make nore sense
to attach it to the function (i.e. third case, sanme as exception
speci fications).

Anot her possibility is in the cv-qualifier list for the pointer:
void (* extern "C" f())();

And yet another is to the left of the "*":
void (extern "C'" *f())();

Bill indicates:

> | ampretty sure that the first two forns are syntactically

> unanbi guous, but | have no idea about the third form | only

> suggest this form because it resenbles the "storage class" syntax

> and so is easier to understand and renenber.

Pr oposal

When 'extern "C'' is witten as a storage class, it applies to
every function declarator in the declaration. This justifies saying
that in both of these declarations, the calling conventionis "C'

extern "C' void f();
extern "C" void (*pf)();

In effect, the storage-class version of "extern" is |like the block

version - it applies to everything in its scope.
When 'extern "C'" is witten after a paraneter list, it applies
only to the associated function declarator. It overrides any nore

gl obal specifications (just as a storage-class |inkage specification
may override a bl ock |inkage specification.)

Rul es for assignnent, initialization, etc. are exactly the sanme as
those for exception specifications (see 15.4[except.spec]) except
that enforcement is nmandatory and the specifications nust match
exactly.

Solution 3): extern "C' only affects function declarators

Li nkage specifications only affect the top |level declarator - which
inplies that it cannot and nust not be checked. For exanple, if you
pass a function pointer to a function which expects a "C' |inkage
function pointer, there is no way to express the restriction on the
ar gunent .

This is basically what the draft currently says.
It requires that a standard conformant inplenentation make the
foll owi ng exanpl e wel | -forned:

i nt conpar(const void*, const void*);
extern "C'" void qgsort(..., int (*)(const void*, const void*));
gsort (..., conpar); //1 nmust be well-forned

i ssue 420: Do linkage specifications affect overl oaded operator?

7.5 discusses the effect of |inkage specifications on function
declarations. Do these rules also apply for operator functions?

Exanpl e:
extern "C' {
struct S {
i nt data_nenber;
i
int operator+ (S& int); // Does this operator have C
/1 1inkage?
}
Sol ution 1)

Leave this inplenentation-defined.

Sol ution 2)

7.5 paragraph 2 says:
"A linkage-specification for a class applies to nonnmenber functions
and objects declared within it."

The wording in paragraph 2 inplies that |inkage-specifications do not
af fect menber functions. |t may nakes sense for the WP to al so say
that |inkage-specifications do not affect overl oaded operator
functions.

Pr oposal

| slightly prefer solution 2).
I can live with either.

i ssue 616: How does the ODR apply to extern "C' function definitions?

In message core-6303, Steve O amage asks the foll ow ng:
Is the followi ng conpilation unit valid?

nanespace A { extern "C' int f() { return 1; } }
nanespace B { extern "C' int f() { return 2; } }

In other words, have | defined two different functions with the
signature "f()" (valid), or have | provided two definitions for
the same function (invalid)?

I don’t find an answer to the question in the draft.

[...]

Fromthe library inplenentation viewoint, it would be nice if a
non- C++ | i nkage specification neant that the namespace nanme was in
some sense an "optional" part of the function s nane:

extern "C" void f() { } // A:f() and B::f() refer to this function
But we still want this property:

namespace A { extern "C' void f(); }
void foo() {
f(); // error, f undeclared

void bar() {
using A :f;
f(); /1 ok

The extern "C' function f can be defined in any nanespace or
outside all nanespaces; there can be only one definition

That is, the extern "C' affects the linkage of the nane in such a
way as to ignore the nanmespace nanme, but does not affect the
scope of the name in the C++ source program
-]
That solution | eaves open the problem of global variables in the
Clibrary. Atypical inplenmentation of errno is to nake it a
gl obal int:

nanespace std { extern int errno; }
How can this be the same object as the errno in the Clibrary?
(An add-on C++ inplenentation does not have the option of
replacing the Clibrary.)

| suggest we give extern "C' for data the sane effect on the nane
as for functions. W would then wite
nanespace std { extern "C' int errno; }

VVVVVVVVVVVVVTVVVVVVVVVVVVVVVVVVVVVVVVVYVVVVYVYVVYV

éid::errno = 0; // sets the errno in the Clibrary

Pr oposal

Add the follow ng to paragraph 4:

"The declarations for a function with Clinkage with the sane
function nane (ignoring the namespace nanes that qualify it) and
the sane paraneter-clause that appear in different namespace scopes
refer to the sane function. The declarations for an object with C
linkage with the same nane (ignoring the nanmespace nanes that
qualify it) that appear in different namespace scopes refer to the
same object. [Note: because of the one definition rule
(_basic.def.odr), only one definition for a function or object
with C linkage nmay appear in the program that is, such a function
or object nust not be defined in nore than one namespace scope.

For exanpl e,

nanespace A {
extern "C" int f();
extern "C" int g() { return 1; }

}
nanespace B {
extern "C" int f(); /1 A:f and B::f refer to the
/1 same function
extern "C" int g() { return 2; } // ill-forned, two definitions
/1 provided for g
}

-- end note]"

