Doc No: X3J16/96-0110 W321/N0928
Dat e: May 28th, 1996
Project: Programm ng Language C++
Ref Doc:
Reply to: Josee Lajoie

(j osee@net.ibm com

+ +

| Core WG List of |ssues
+ +

The issues listed as editorial or as closed in the version of the core |ist
of issues that appeared in the Post-Santa Cruz mailing (96-0084/N0902) were
resolved in the pre-Stockhol mversion of the working paper (WP) and are
therefore not listed in this version of the core |list of issues.

The issues listed as closed in this version of the core list of issues where
opened issues in previous versions of the core list of issues and have been
handl ed as editorial issues in the pre-Stockhol mversion of the WP

3.9.1 [basic.fundamental | :
643: The term "integer code" needs to be defined
5.6 [expr.mul]:
600: Should the value returned by integer division and renai nder be defined
by the standard?
5.19 [expr.const]:
537: Can the inplenentation accept other constant expressions?
16. 8 [cpp. predefined]:
661: Should _ DATE _and _ TIME__ be nmde | ocal e aware?

| Lexical Conventions

2.1 [l ex. phases]:

634: Do the phases of translation need to discuss shared libraries?
2.2 [l ex.charset]:

607: Definition needed for source character set

Fom e e +
| Corel |
Fomm oo - +
Cener a

1.1 [intro.scope]:
604: Should the C++ standard tal k about features in C++ prior to 1985?
1.7 [intro.conpliance]:
602: Are ill-formed progranms with non-required diagnostics really
necessary?
619: Is the definition of "resource limts" needed?

Li nkage / ODR

3.2 [basic.def.odr]:
427: \When is a diagnostic required when a function used is not defined?
556: What does "An object/function is used..." nean?

3.5 [basic.link]:
526: What is the linkage of nanes declared in unnaned nanmespaces?

615: Do conflicting |inkages in different scopes cause undefi ned behavi or?

7.5 [dcl.link]:
78: Linkage specification and calling protoco
420: Linkage of C++ entities declared within ‘extern "C"
616: Can the definition for an extern "C' function be provided in two
di fferent nanespaces?

9.5 [class.union]:

505: Must anonynous uni ons declared in unnaned nanespaces al so be static?

Menory Model
3.7.3 [basic. stc. dynam c]
641: \Wich allocation/deallocation functions are predefined and whi ch ones
may be overriden in a progranf
3.7.3.1 [basic.stc.dynam c. al | ocation]:
642: |s the behavior of new(size t, const std::nothrow&)
i mpl emrent ati on- defi ned?
5.3.1 [expr.unary.op]:
645: Shoul d &*(array+upperbound) be all owed?
5.3.4 [expr.new:
453: Can operator new be called to allocate storage for tenporaries, RTTI
or exception handling?
577: Are there any requirenents on the alignment of the pointer used with
new wi th placenent ?
637: How is operator delete |ooked up if the constructor froma new wth
pl acenent throws an exception?
638: Accesibility of ctor/dtor, operator new and operator delete
5.9 [expr.rel]:
513: Are pointer conversions inplenentation-defined or unspecified?

hj ect Model
3.6.2 [basic.start.init]:
613: What is the order of destruction of objects statically initialized?
6.4 [stnt.select]:
639: What is the lifetinme of declarations in conditions?
6.7 [stnt.dcl]:
635: local static variable initialization and recursive function calls
9.5 [class.union]:
655: When is storing into another union nenber ill-forned?
10.1 [class. m]:
624: class with direct and indirect class of the sane type: how can the
base cl ass nmenbers be referred to?
12.2 [cl ass.tenporary]:
598: Shoul d a diagnostic be required if an rvalue is used in a
ctor-initializer or in areturn stm to initialize a reference?
12.8 [cl ass. copy]:
536: Wien can objects be elimnated (optinized away) ?

1.8 [intro.execution]:
603: Do the WP constraints prevent nulti-threading inplenmentations?
605: The execution nodel wt to sequence points and side-effects needs work
633: |Is there a sequence point after the operand of dynami c_cast is
eval uat ed?

Nane Look Up

3.4.2.2[nanespace. qual]:
654: Qualified | ook up for names after global scope :

7. 3.3 [nanespace. udecl]
646: Can a using declaration refer to a hidden base class nenber?
650: How does nane | ook up proceed for the nane in a using declaration?
7.3.4 [nanmespace. udir]:
612: nane | ook up and unnanmed nanespaces
8.3 [dc. meani ng]:
636: Can a typedef-name be used to declare an operator function?
10.1 [class.m]:
446: Can explicit qualification be used for base class navigation?

Access
11. 8[cl ass. access. nest]:
653: \What does it nmean for nested classes if a class-nane is inserted into
the scope of the class itself?
11.4[cl ass.friend]:
656: access of nanes used in base cl auses

Types / O asses / Unions
3.9 [basic.life]:
621: The terns "sane type" need to be defined
9.6 [class.bit]:
47: enum bitfields - can they be declared with < or > bits than required?

Default Argunents
8.3.6 [dcl.fct.default]:
531: Is a default argunent a context that requires a val ue?
640: default argunents and using decl arations
12.6 [class.init]:
138: Wien are default ctor default args evaluated for array el enents?

Type Conversions / Function Overload Resol ution
4.13 [conv. bool]:
601: Should inplicit conversion fromint to bool be allowed?
5.4 [expr.cast]:
660: Conversions allowed by C style casts are too broad
5.9 [expr.rel]:
493: Better description of the cv-qualification for the result of a
rel ati onal operator needed
13.3.3.1 [over. best.ics]:
652: |Is a derived-to-base conversion required to be inplenmented by a copy
constructor of the base class?
13.6 [over.built]:
658: Shoul d declarations for binary built-in operators only accept operands
of the sane type?
659: Should the prototypes for built-in operators properly take into
account arithnetic conversions?

5.5 [expr.nptr.oper]:
644: Must the operand of .* and ->* have a conplete class type?

RTTI

5.2.6 [expr.dynami c.cast]:
549: |s a dynam c_cast froma private base all owed?

Excepti on Handling
15.1 [except.throw:
647: Is it inplenmentation-defined or unspecified how the nenory for the
exception object is allocated?
15. 3 [except. handl e] :
541: |Is a function-try-block allowed for the function main?
542: What exception can a reference to a pointer to base catch?
587: Can a pointer/reference to an inconplete type appear in a catch
cl ause?
648: Is it inplementation-defined or unspecified whether the stack is
unwound before term nate is called?
15. 4 [except. spec]:
588: How can exception specifications be checked at conpile tinme if the
class type is inconplete?
630: What is the exception specification of inplicitly declared special
menber functions?
631: Must the exception specification on a function declaration match the
exception specification on the function definition?
657: Must the exception-specification of a declaration be nore or |ess
restrictive than the exception-specification of the definition?
15.5.1 [except.term nate]:
649: Should it be mandated that term nate be called upon internal error?
15. 5.2 [except. unexpect ed]:
651: |s unexpected called before the stack is partly unwound?

| Cosed Issues - issues resolved at the Tokyo neeting

4.9 [conv.fpint]:
617: Are floating point conversions unspecified or inplenentation-defined?
12.8 [cl ass. copy]:
626: What is the formof the inplicitly-declared operator=if a base class
has Base::operator=(B)?

Chapter 1 - Introduction

Work G oup: Core

| ssue Nunber: 604

Title: Shoul d the C++ standard tal k about features in C++ prior to
19857

Secti on: 1.1 [intro. scope]

St at us: active

Descri ption:

UK i ssue 229:

"Delete the |last sentence of 1.1 and Annex C.1.2. This is the first
standard for C++, what happened prior to 1985 is not relevant to
this docunent."”

Resol uti on:

Request or: UK i ssue 229

Owner : Josee Lajoie (General)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 602

Title: Are ill-fornmed prograns with non-required diagnostics really
necessary?

Secti on: 1.7 [intro.conpliance]

St at us: active

Descri pti on:

UK i ssue 9:

"W believe that current technol ogy now all ows many of the
non-requi red di agnostics to be diagnosed wi thout excessive overhead.
For exanple, the use of & on an object of inconplete type, when the
compl ete type has a user-defined operator&(). We would like to see
di agnostics for such cases.”

[note JL:]
At the Tokyo neeting, we discussed this a bit and decided that this
i ssue required nore dicussions.

Question: Do deprecated features render a programill-formed but
no di agnostic is required?

See al so UK i ssue 93.
Resol uti on:

Request or: UK issue 9
Owner : Josee Lajoie (General)
Emai | s:
Paper s:
Work G oup: Core
| ssue Nunber: 619
Title: Is the definition of "resource limts" needed?
Secti on: 1.7 [intro.conpliance]
St at us: active
Descri ption:

1.7 para 1 says

"Every conforming C++ inplementation shall, within its resource

limts, accept and correctly execute well-formed C++ prograns..."
The termresource linmts is not defined anywhere.
Is this definition really needed?
Resol uti on:

Request or: ANSI Public coment 7.12
Owner : Josee Lajoie (General)
Emai | s:
Paper s:
Work G oup: Core
| ssue Nunber: 603
Title: Do the WP constraints prevent multi-threading
i mpl enrent ati ons?
Secti on: 1.8 [intro.execution]
St at us: active
Descri ption:
UK issue 11:

"No constraints should be put into the WP that preclude an
i mpl erentation using nulti-threadi ng, where avail able and
appropriate.”

Bill G bbons notes:
For exanple, do the requirenents on order of destruction between
sequence points preclude C++ inplenentations on nulti-threading
architectures?

Resol uti on:

Request or: UK issue 11

Owner : St eve Adantzyk (sequence points)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 605

Title: The execution nodel wt to sequence points and side-effects
needs wor k

Secti on: 1.8 [intro. execution]

St at us: active

Descri ption:

See UK issues 263, 264, 265, 266

1.8 para 9:

"What is a "needed side-effect"? This paragraph, along with
footnote 3 appears to be a definition of the C standard "as-if"
rule. This rule should be defined as such. [Proposed definition
of "needed": if the output of the program depends on it.]"

1.8 para 10:

"It is not true to say that val ues of objects at the previous
sequence point may be relied on. |f an object has a new val ue
assigned to it and is not of type sig atomc_t the bytes making up
that object may be individually assigned values at any point prior
to the next sequence point. So the value of any object that is
nmodi fi ed between two sequence points is indeterm nate between those
two points. This paragraph needs to be nodified to reflect this
state of affairs.”

Al so, para 11:
"Such an object [of automatic storage duration] exits and retains its
| ast-stored val ue during the execution of the block and while the
bl ock is suspended ..."
This is not quite correct, the object may not retain its |last-stored
val ue.

Para 9, 10, 11 and 12 al so contain sonme undefined terns.
Resol uti on:

Request or: UK i ssues 263, 264, 265, 266
Owner : St eve Adantzyk (sequence points)
Emai | s:
Papers:
Wirk G oup: Core
| ssue Nunber: 633
Title: Is there a sequence point after the operand of dynanic_cast
i s eval uat ed?
Secti on: 1.8 [intro. execution]
St at us: active
Descri ption:
Box 1 in 1.8 says:
"The Working group is still discussing whether there is a sequence

point after the operand of dynamic-cast is evaluated; this is a
context from which an exception night be thrown, even though no
function call is performed. This has not yet been voted upon by the
Wirking Goup, and it may be redundant with the sequence point at
function-exit.

Resol uti on:

Request or:

Owner : St eve Adantzyk (sequence points)

Emai | s:

Paper s:

Chapter 2 - Lexical Conventions

Work G oup: Core
| ssue Nunber: 634
Title: Do the phases of translation need to discuss shared
libraries?
Secti on: 2.1 [l ex. phases]
St at us: active
Descri ption:
Box 3:
Do the phase of translations need to discuss shared |ibraries?
Request or:
Omner : Tom Pl um (Lexi cal Conventi ons)
Emai | s:

Paper s:

Wrk Group: Core
| ssue Nunber: 607

Title: Definition needed for character set(s)
Secti on: 2.1 [l ex.charset]

St at us: active

Descri ption:

There are many issues regarding definitions of character sets.

Here are the issues that were raised by the public comments:

oln 1.4 [_intro.defs_]:
Mul ti byte character. This definition uses the terns "extended
character set" which is not defined
Also, in the last sentence: What is the basic character set?
Is it the basic source character set or basic execution character
set?

0 2.11.2 [lex.ccon_]:
Paragraph 1 uses the phrase "execution character set" which is not
def i ned.

0 3.6.1 [_basic.start.main_]:
The description uses the phrase "null-termnated nultibyte strings
(NTMBSs)," but this is nowhere defined

Resol uti on:

Request or: UK i ssue 288

Owner : Tom Pl um (Lexi cal Conventi ons)
Emai | s:

Papers:

Chapter 3 - Basic Concepts

Wirk G oup: Core

| ssue Nunber: 427

Title: When is a diagnostic required when a function/variable with
static storage duration is used but not defined?

Secti on: 3.2 [basic.def.odr] One Definition Rule

St at us: active

Descri ption:

When is a diagnostic required if no definition is provided for a
function or for variable with static storage duration?

int main() {
extern int x;
extern int f();
return 0 ? x+f() : O

}

Must a disgnostic be issued if x and f are never defined?

The current WP contains this sentence: "If a non-virtual function is
not defined, a diagnostic is required only if an attenpt is actually
made to call that function." This seens to be hinting that, for
cases such as the one above, a diagnostic is not required.

[Jerry Schwarz, core-6173:]

I think we should be tal ki ng about undefined behaviors, not required
di agnostics. That is, if a programreferences (calls it or takes its
address) an undefined non-virtual function then the program has
undefi ned behavi or

[Fergus Henderson, core-6175, on Jerry’s proposal:]

I think that would be a step backwards. [If a variable or function
is used but not defined, all existing inplenentations will report a
di agnostic. Wiat is to be gained by allow ng inplenentations to

do sonething else (e.g. delete all the users files, etc.) instead?

[Mke Ball, core-6183:]

Then you had better not put the function definition in a shared
library, since this isn't |oaded until runtime. Sonetines |inkers
will detect this at link time and sonetinmes they won't.

[Sean Corfield, core-6182:]

I"d like it worded so that an inplenmentation can still issue a

di agnostic here (exanpl e above) AND REFUSE TO EXECUTE THE PROGRAM
If "x” and 'f’ were not nentioned in the program (except in their
declarations) | would be quite happy that no definition is required.
But unl ess an inplenmentation can refuse to execute the program you
are REQUI RING i mpl enentations to make the optimisation and that is
definitely a Bad Thing(tm), IMO It seens the only way to allow that
is to make the programill-formed (under the ODR) but say no

di agnostic is required.

[Fergus Henderson, core-6174:]

bj ectCenter reports a diagnostic only if an attenpt is actually
made to use the function or variable; in other words, link errors
are not reported until runtime. 1In an interpreted environnent, this
is quite desireable.

See al so UK i ssues 335, 336, 337.

Joe Coha al so nentioned in private email:

"Do | really need to have one definition of the static data nmenber

in the progran? Even if it’s unused? 9.4.2 says yes. However, this
seens contradictory to the rules in 3.2. If a programis not
required to define a non-local variable with static storage duration
if the variable is not used, why is the WP requiring that the

static data nenber be defined if it is not used?”

Resol uti on:

Request or: Josee Lajoie
Owner : Josee Lajoie (ODR)
Emai | s:
core-6172
Paper s:

95- 0205/ NO805

Work G oup: Core

| ssue Nunber: 556

Title: What does "An object/function is used..." nean?
Secti on: 3.2 [basic.def.odr] One Definition Rule

St at us: active

Descri ption:

This is frompublic coment T25
"I't is not clear what object 'use' and 'reuse’ is.

Neal Gafter al so notes:
"When nust a cl ass destructor be defined?

According to a strict interpretation of 3.2 [basic.def.odr]
paragraph 2, the destructor for class A in the program bel ow needn’t
be defi ned.

struct A {
~A();

H
void f() throw (A*)

A *a = new A
throw a;

mai n()

return O;

The sane question applies to nany other contexts in which
destructors are inplicitly used. For exanple, the expression

new A[20]
generates code to call the destructor A :~A() when the constructor
throws an exception. Does this nean the destructor nust be defined

in order to new an array?"

Al so see UK i ssue 364.

Resol uti on:

Request or: comrent T25 (3.8)
Owner : Josee Lajoie (ODR
Emai | s:

Papers:

95- 0205/ N0805

Work Group: Core
| ssue Nunber: 654

Title: Qualified |l ook up for nanes after global scope :
Secti on: 3. 4. 2. 2[namespace. qual]
St at us: active
Descri pti on:
The description in this clause indicates that
A :m
the nane mis looked up in the scope of Aand, if not found in A in
the scopes naned by using directives in A and if not found in these
scopes,
Thi s subclause omts to nention what happens if the nanme is qualified
by the :: gl obal scope resol ution operator
There are two options:
1.such a name is |ooked up just as unqualified-ids are, in which case
a transitive closure of all active using directives in global scope
i s used.
2.such a nanme is | ooked up just as qualified-ids are, in which case
the gl obal scope is searched first, and if the nane is not found in
that scope, the scopes naned by using directives in the globa
scope are searched,
| prefer option 2.
Resol uti on:
Request or:
Owner : Steve Adantzyk (Nanme Look Up)
Emai | s:
Papers:
Work G oup: Core

| ssue Nunber: 526

Title: What is the linkage of nanmes declared in unnaned nanmespaces?
Secti on: 3.5 [basic.link] Program and |inkage
St at us: active
Descri pti on:
What is the linkage of names declared in an unnaned namespace?
Internal |inkage?
Internal |inkage applies to variables and functi ons.

What woul d the status of a type definition be in an unnanmed
nanespace? No |inkage?

Can it be used to declare a function with external I|inkage?
Can it be used to instantiate a tenplate?

nanespace {
class A{ I* ... *| };
}

extern void f(A&); Il error?

tenplate <class T> class X { /* ... *[};

X<A> X; Il error?
If A does not have external |inkage, then the two declarations are
probably errors. If it does have external |inkage, then the two

declarations are legal (and the inplenentation probably has to worry
about nanme mangling).

Resol uti on:
Request or: M ke Ander son
Owner : Josee Lajoi e (Linkage)
Emai | s:
core-5905 and foll owi ng nessages.
Paper s:
Work G oup: Core
| ssue Nunber: 615
Title: Do conflicting linkages in different scopes cause undefined
behavi or ?
Secti on: 3.5 [basic.link] Program and |inkage
St at us: active
Descri ption:

Is the followi ng program consisting of two translation units,
wel | -formed? What should it print?

In C, this program would be undefined because "If, within a
translation unit, the sane identifier appears with both
internal and external |inkage, the behavior is undefined"
[ANSI C section 3.1.2.2]

/Il tl.cc
#i ncl ude <stdi 0. h>
int main(void) {

extern int *const pia ; // external |inkage
printf("%l\n", !pia);
return(0) ;
oo
int ia =20 ;
static int *const pia =& a ; /1 internal |inkage
/Il t2.cc

I
°

extern int *const pia

Anot her exanpl e, using namespaces:
nanespace N {

staticint i; //1
int f(int j) {
int i =5; /[/]2
if (j >0) return i
el se
{
externint i; //3
return i;
}
}

7.3. 1. 2[nanmespace. nendef] para 4 says

"When an entity declared with a bl ock scope extern declaration is not
found to refer to sonme other declaration, then that entity is a
menber of the innernost encl osi ng nanespace. "

3. 5[basic.link] para 6 says:

"If the block scope declaration matches a previ ous declaration of the
same object, the nane introduced by the bl ock scope declaration
recei ves the linkage of the previous declaration; otherw se, it
recei ves external |inkage."

The declaration on line //3 refers to N.:i.

However, the declaration of N::i on line //1 is hidden by the

decl aration of block scope i on line //2.

So the variable N.:i introduced by the declaration on line //3 has
external |inkage, which does not match the |inkage specified by
the hidden declaration of N.:i on line //1.

Proposed Resol uti on:
Add a rule to the C++ WP (probably in 3.5[basic.link] at the end of
para 6) that says basically what the rule in the C standard says

"If, within a translation unit, an extern bl ock scope declaration

gi ves an obj ect external |inkage and, a hidden declaration or a
decl aration of the sanme object that appears later on in the
translation unit gives the object internal |inkage, the behavior is
undefined. "
Resol uti on:
Request or: Neal M Gafter <Neal . Gafter @ng. Sun. Conp
Owner : Josee Lajoi e (Linkage)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 613
Title: What is the order of destruction of objects statically
initialized?
Secti on: 3.6.2 [basic.start.init]
St at us: active
Descri pti on:
G ven:
struct A{ int i; ~A(); };
Aa={1};
If an inplenmentation decides to initialize a.i "statically",
when nmust the inplenentation destroy a.i? i.e. what does it nean
in such cases to destroy a.i "in reverse order of construction"?
Resol uti on:
Request or: Erwi n Unruh
Owner : Josee Lajoie (Object Mddel)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 641
Title: VWi ch all ocation/deal |l ocation functions are predefined and
whi ch ones nay be overriden in a progranf
Secti on: 3.7.3 [basic. stc. dynanmi c]
St at us: active
Descri pti on:

Para 2 should be nmade clearer to indicate:

0 which one of the allocation/deallocation functions are predefined,
and

0 which one a program nay override

| believe the answer to these two questions is not the sane.

::operator new(size_t)
i operator new(size_t, void*)
;. operator new(size_t, const std::nothrow)
;. operator new](size_t)
c:operator new] (size_t, void*)
c:operator new](size_t, const std::nothrow&)
;. operator del ete(void*)
::operator del ete(void*, void*)
.. operator del ete(void*, const std::nothrowg)
.. operator delete[](void*)
;. operator delete[](void*, void*)
Resol uti on:
Request or: Erwi n Unruh

Owner : Josee Lajoie (Menory Mbdel)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 642

Title: Is the behavior of new(size_t, const std::nothrow&)
i mpl enent ati on-defi ned?

Secti on: 3.7.3.1 [basic.stc.dynam c. al | ocati on]

St at us: active

Descri pti on:

para 4 says:
"If the allocation function returns the null pointer the result is
i mpl enent ati on-defined."

This means that any use of new(size t, const std::nothrow&) directly
depends on inpl ement ati on-defi ned behavi or.

Proposed Resol uti on:
If the allocation function returns the null pointer, the new
expression should yield null.

Resol uti on:

Request or: Erwi n Unruh

Owner : Josee Lajoie (Menory Mbdel)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 621

Title: The terns "sanme type" need to be defined
Secti on: 3.9 [basic.types]

St at us: active

Descri ption:

The WP needs to define what it nmeans for two objects/expressions
to have the sane type. The phrase is used a | ot throughout the WP

Request or:

Owner : Steve Adantzyk (Types)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 643

Title: The term "integer code" needs to be defined
Secti on: 3. 9. 1] basi c. fundanent al]

St at us: active

Descri ption:

para 1 says:

"(bj ects declared as characters (char) shall be |arge enough to store
any nenber of the inplementation’s basic character set. If a
character fromthis set is stored in a character object, its value
shal |l be equivalent to the integer code of that character.”

What does "integer code" nean?
Maybe the same wording as the one used in C should be used.

Request or: UK i ssue 407

Owner : Tom Pl um (C conpatibility)
Emai | s:

Papers:

Chapter 4 - Standard Conversions

Work G oup: Core
| ssue Nunber: 617
Title: Are floating point conversions unspecified or

i mpl emrent ati on- defi ned?
Secti on: 4.9 [conv. fpint]

St at us: cl osed
Descri ption:
para 2 says
"OGtherwise, it is an unspecified choice of either the next |ower or
hi gher representabl e value."
I SO C says:
"Qtherwise, it is an inplenentation-defined choice of either the
nearest | ower or higher representable value."

Shoul d this be "unspecified" or "inplenmentation-defined"?
Resol uti on:

Request or: UK i ssue 543

Owner : Steve Adantzyk (Type Conver sions)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 601

Title: Should inmplicit conversion fromint to bool be allowed?
Secti on: 4.13 [conv. bool]

St at us: active

Descri pti on:

| SO Swedi sh commrent R-28:

Strengt heni ng of bool datatype [conv.bool] The original proposa

for a Bool ean datatype (called bool) provided some additiona
type-safety at little cost. SC22/ W21 changed the proposal to allow
inmplicit conversion fromint to bool, thereby reducing type-safety
and error detectability.

The inplicit conversion fromint to bool shall be deprecated, as
described in docunent 93- 0143/N0350. As a future work-item the
inmplicit conversion should be renoved.

Al so see UK issue 479 and 489.

(Di sal | ow operands of bool type with operators ++, --).
Resol uti on:
Request or: Swedi sh Del egati on
Owner : Steve Adantzyk (Type Conver sions)
Emai | s:
Papers:

Chapter 5 - Expressions

Work G oup: Core

| ssue Nunber: 549

Title: Is a dynanic_cast froma private base all owed?
Secti on: 5.2.6 [expr.dynam c. cast]

St at us: active

Descri ption:

par agr aph 8 says:

“...if the type of the conplete object has an unanbi guous public base
class of type T, the result is a pointer (reference) to the T

sub- obj ect of the conplete object. Gtherw se, the runtime check
fails.”

This contradicts the exanple that foll ows:
class A{ };
class B { };
class D: public virtual A private B { };

D d;
B* bp = (B*) &d;
D& dr = dynami c_cast<D&(*bp); // succeeds

According to the wording in paragraph 8, the cast above should fail

Bill G bbons noted the follow ng:

First, the access restrictions on dynamic_casts appear to cone from
the access restrictions on static_cast, where neither upcasting nor
downcasting across private derivation is allowed.

Yet dynam c_cast does not apply these restrictions consistently, even
for sinple downcasts:

struct A{ virtual void f() { } };
struct B : private A{ };
struct C: public B{ };

void f() {

A *a = (A*) new C

B *b = static_cast<B*>(a); // ill-forned

B *b = dynami c_cast<B*>(a); // OK under 1st "ot herw se"
}

| see several ways to clean this up

(1) Change the first "otherw se" clause to also require that
"v points (refers) to a public base class sub-object of the
nmost derived object". This seens closest to the intent of the
current wording. It would nake the above exanple ill-forned.

This is equivalent to saying that a dynanmic cast is OKif it
can be done with a static cast to the nost derived type
followed by a static cast to the final type, ignoring the
uni queness and virtual inheritance restrictions on static
downcast s.

(2) Say sonething I|ike:

A dynanic cast is well-fornmed if there exists a class X within
the nmost derived object hierarchy (including the nost derived
cl ass) such that:

-- v

refers to X or a public base class of X; and

-- Tis Xor a public base class of X
That is, a dynamc cast is OKif it can be done with any
conbi nation of two static casts, ignoring the uni queness and
virtual inheritance restrictions on static downcasts. This
woul d al so make the above exanple ill-forned.

(3) Change both dynam c_cast and static_cast; see bel ow

| had al so forgotten (and was somewhat di smayed to redi scover) that
static_cast cannot be used to break protection. For exanple:

struct A{ };
struct B : private A{ };

void f() {
B *b = new B;
A *al = (A*) b; Il K
A *a2 = static_cast<A*>(b); // ill-forned
A *a3 = dynami c_cast<A*>(b); // well-forned,
/1 but "a3" not usable
}

Did we really intend to do this, or was it an accidental side effect

of defining static_cast in terns of the inverse of an inplicit cast?

Al'so, | see no reason to restrict downcasting across private

i nheritance. |f static_cast were changed to allowit, | would
consider the "across private inheritance" part to be inplicit, and
the "downcasting" part to be the one that required an explicit cast.

In that light, | would propose one of these changes to dynam c_cast:

(1) Rerove the first "public" from paragraph 8 and al so all ow
downcasting to the nost derived class, regardl ess of access.

(2) The equivalent of (2) above:
A dynanic cast is well-forned if there exists a class X within
the nost derived object hierarchy (including the nost derived
cl ass) such that:
-- "v" refers to X or a base class of X and
-- Tis Xor a public base class of X
That is, a dynanmic cast is OKif it can be done with a
combi nation of two static casts, ignoring the uniqueness and

virtual inheritance restrictions on static downcasts. This
woul d al so nake the above exanple ill-forned.

Simlarly, should upcasting of pointers to nenbers across private
i nheritance be restricted nore than upcasting of pointers to nenbers
across public inheritance?

Resol uti on:

Request or:
Owner : Bill G bbons (RTTI)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 645
Title: Shoul d &* (array+upper bound) be all owed?
Secti on: 5.3.1 [expr.unary. op]
St at us: active
Descri ption:
para 1:

"The unary * operator performs indirection: the expression to which
it is applied shall be a pointer to an object type or a pointer to
function type and the result is an Ivalue referring to the object or
function to which the expression points."

int a[4];
*(at4)

The problemis that a+4 does not point to an object.

Is it ill-forned to apply the * operator to such an expression?
Resol uti on:
Request or: Mke Mller
Owner : Josee Lajoie (Menory Model)
Emai | s:
Paper s:
Work G oup: Core
| ssue Nunber: 453
Title: Can operator new be called to allocate storage for

tenporaries, RTTI or exception handling?
Secti on: 5.3.4 [expr.new] New

St at us:
Descri pt

active
i on:
Is it pernmitted for an inplenentation to create tenporaries on the
heap rather than on the stack? |If so, does that require that
operator new() be accessible in the context in which such a tenmporary
is created?

Is an inplenentation allowed to call a replaced operator new whenever
it likes (storage for RTTI, exception handling, initializing static
inalibrary)?

Core 1 discussed this issue in Mnterey.

This is the resolution the W5 seened to converge towards:
The storage for variables with static storage duration, for data
structures used for RTTlI and exception handling cannot be acquired
wi t h operator new

gl obal operator new del ete (either the user-defined ones or the
i npl ement ati on-supplied ones) will only be called fromnew del ete
expressions and by the functions in the library.

Pr oposed Resol uti on:

The C standard says the follow ng:
See 6.1.2.4 (storage durations of objects):

0 For objects of static storage duration
"For such an object, the storage is reserved ... prior to
program start up.
The C++ standard shoul d probably say sonmething like this in
section 3.7.1 [basic.stc.stc].

0 For objects of automatic storage duration
"Storage is guaranteed to be reserved for a new instance of such
an object on each normal entry into a block with which it is
associ ated, or on a junp fromoutside the block to a | abel ed
statement in the block or in an enclosed block. Storage for the
object is no longer guaranteed to be reserved when execution of
the block ends in any way. (Entering an encl osed bl ock suspends
but does not end execution of the exclosing block. Calling a
function suspends but does not end execution of the block
containing the call."
The C++ standard shoul d probably say something like this in section
3.7.2 [basic.stc.auto].

The C++ standard should also indicate the followi ng restrictions:
12.2 [class.tenporary] should probably indicate that the storage
for tenporaries is not allocated by operator new.

5.2.6[expr.dynam c. cast], 5.2.7[expr.typeid] and 15[except] should
probably indicate that the storage for the data structures required
for RTTI and exception handling is not allocated by operator new

Resol uti on:
Request or: Mke Mller
Owner : Josee Lajoie (Menory Mbdel)
Emai | s:
core-5068
Papers:
Work G oup: Core

| ssue Nunber: 577

Title: Are there any requirenents on the alignnent of the pointer
used with new with placenent?

Secti on: 5.3.4 [expr.new] New

St at us: active

Descri pti on:

For exanple, 12.4 para 10 gives exanples of placenent new used wth

a buffer created as foll ows:
class X { };
static char buf[sizeof (X)];
Is the alignment of a static array of char guaranteed to satisfy the
al i gnment requirenents of an arbitrary class X?
Resol uti on:

Request or: public coment T26

Owner : Josee Lajoie (Menory Mbdel)

Emai | s:

Papers:

Wirk G oup: Core

| ssue Nunber: 637

Title: How i s operator delete |ooked up if the constructor froma
new wi th placenent throws an exception?

Secti on: 5.3.4 [expr.new] New

St at us: active

Descri ption:

par agraph 18 says:

"If the constructor exits using an exception and the new expression
contains a new placenent, a nane | ookup is perfornmed on the nanme
of operator delete in the scope of this new expression.”

Jerry Schwarz says:

> That doesn’t seemright. | think I should be able to wite
> struct X {
> voi d* operator new(size_ t, void*);
> voi d operator del ete(void*);
> voi d operator del ete(void*, void*);
> X();
> };
> X*p;
> new(p) X; // uses X :operator new
> [l if X :X() throws an exception, storage should
> /1 be deallocated by X: :operator delete.
Resol uti on:
Request or: Jerry Schwar z
Owner : Josee Lajoie (Menory Mbdel)
Emai | s:
core-6418
Papers:
Wirk G oup: Core
| ssue Nunber: 638
Title: Accesibility of ctor/dtor, operator new and operator delete
Secti on: 5.3.4 [expr.new] New
St at us: active
Descri ption:
struct A {
void * operator new(size t);
voi d operator delete(void *);
virtual ~A();
b
struct B {
void * operator new(size_t);
voi d operator delete(void *);
virtual ~B();
b

struct D: public A public B {
voi d *operator new(size_ t);
virtual ~IX);
|
mai n() {
A *pa = new D
delete pa; // A :operator delete() or B::operator delete()?

When is it detected that operator delete is anbi guous?

When struct D is defined?

When t he new expression is encountered?

I's the behavior undefined if new happens to throw an exception?

Simlar questions for the accessibility of the destructor /
operator del ete.

Does it nake a difference if a new with placenent is used?
Does it make a difference if a new nothrow is used?
If new] is used?

Resol uti on:

Request or: M ke Ander son
Owner : Josee Lajoie (Menory Mbdel)
Emai | s:
Papers:
Wirk G oup: Core
| ssue Nunber: 660
Title: Conversions allowed by C style casts are too broad
Secti on: 5.4 [expr.cast]
St at us: active
Descri pti on:
Para 5:

"The conversions performed by static_cast (_expr.static.cast_),
reinterpret _cast (_expr.reinterpret.cast_), const_cast
(_expr.const.cast_), or any sequence thereof, can be perforned using
the cast notation of explicit type conversion."

| think this is too broad, as it makes this code wel | -forned

struct A {

operator int ();
b
const A ga;
void f () {

(void*)a; /* reinterpret_cast <void *>

(static_cast <int> (const_cast <A& (a))) */

}
Do people think that conpilers should be required to handle this
case?

How about the case where "a is non-const (requiring only the first
two new casts), or where the cast is to 'int’ (requiring only the
latter two new casts)?

Resol uti on:

Request or: Jason Merrill
Owner : St eve Adantzyk
Emai | s:
core-6753
Papers:
Wirk G oup: Core
| ssue Nunber: 644
Title: Must the operand of .* and ->* have a conplete class type?
Secti on: 5.5 [expr.nptr. oper]
St at us: active
Descri ption:
Para 2:
"The binary operator .* binds its second operand, which shall be of
type ‘‘pointer to menber of T '’ to its first operand, which shal

be of class T or of a class of which T is an unanbi guous and
accessi bl e base cl ass. ™

And sonething simlar in para 3 for the ->* operator.

Must T be a conplete class type?

Can the pointer to nenber be of an inconplete class type?
Resol uti on:

Request or: Jerry Schwar z

Owner : Bill G bbons (Pointer to nemnbers)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 600

Title: Shoul d the val ue returned by integer division and renai nder
be defined by the standard?

Secti on: 5.6 [expr.nul]

St at us: active

Descri pti on:

| SO Swedi sh comment R- 26

Di vi sion of negative integers [expr.mul] Paragraph 4: The val ue
returned by the integer division and remai nder operations shall be
defined by the standard, and not be inplenentation defined. The
roundi ng should be towards minus infinity. E. g., the value of the C
expression (-7)/2 should be defined to be -4, not inplenentation
defined. This way the follow ng useful equalities hold (when there
is no overflow, nor "division by zero "):

(i+m*n)/n == (i/n) + mfor all integer values m
(i+nmn)% == (i%) for all integer values m

These useful equalities do not hold when rounding is towards zero.
If towards O is desired, it can easily be defined in ternms of the
round towards mnus infinity variety, whereas the other way around is
trickier and nuch nore error-prone.

Resol uti on:

Request or: Swedi sh Del egati on

Owner : Tom Pl um (C Conpatibility)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 493

Title: Better description of the cv-qualification of the result of a
rel ati onal operator needed

Secti on: 5.9 [expr.rel] Relational Operators

St at us: active

Descri pti on:

5.9p2 says:

"Poi nter conversions are performed on the pointer operands to bring
themto the sane type, which shall be a cv-qualified or
cv-unqual i fied version of the type of one of the operands."”

This seens to inply that the result has exactly the type of one of
t he operands, or an unqualified version of that type. |In fact, the
comon type may have nore qualifiers than either operand type

[Note JL:

for exanple the following is allowed in C
const int* pci
const volatile* pvi;
if (pci == pvi) { }

Pr oposed Resol ution:

Resol uti on:

Request or: Bill 4 bbons

Onner : St eve Adantzyk (Type Conversions)

Emai | s:

Papers:
Work G oup: Core
| ssue Nunber: 513
Title: Are pointer conversions inplenentation-defined or
unspeci fi ed?
Secti on: 5.9 [expr.rel] Relational Operators
St at us: active
Descri pti on:
5.9p2 last '--' says:

"Gt her pointer conparisons are unspecified."

Andr ew Koeni g notes the foll ow ng:

Saying it is unspecified is a trenendous difference fromC. The
point is that in Con, say, the Intel 386 in 16-bit node, when doing
an ordering conparison it is sufficient for the conpiler to generate
code to compare only the loworder 16 bits of the pointers because
the conparison is defined only for two elenents of the sane array.

If C++ is required to conpare the whol e address, that puts it at a
significant perfornmance di sadvantage with respect to C

Resol uti on:

Request or: Erwi n Unruh

Owner : Josee Lajoie (Menory Mbdel)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 537

Title: Can the inplenmentation accept other constant expressions?
Secti on: 5.19 [expr.const] Constant expressions

St at us: active

Descri ption:

The C standard says, in its section on constant expressions:
"An inplenentati on may accept other forms of constant expressions.”
Shoul d C++ say the sanme thing?

In particular, inplenentations often accept extended forns of
constant expressions in order to support 'offsetof’, defined as
returning an 'integral constant expression’. Are inplenmentations
prohi bited to accept other fornms of 'integral constant expressions’
expressi ons which the WP does not describe as constant expressions?

If, in C++, inplenentations are not allowed to extend the set of
constant expressions, then the C conpatibility appendi x should |i st
this as an inconpatibility.

Resol uti on:

Request or: Dave Hendricksen

Owner : Tom Pl um (C Conpatibility)
Emai | s:

Papers:

Chapter 6 - Statenents

Work G oup: Core
| ssue Nunber: 645
Title: When is the result of an expression statenment converted to an
rval ue?
Secti on: 6.2 [stnt.expr]
St at us: active
Descri ption:
class C
extern C& f();
void foo() {

f(); //1

}

Is line //1 ill-formed because the return value of f() is converted
to an rvalue and Cis an inconplete class type?
Resol uti on:

Request or:
Owner : Steve Adantzyk (Type Conver sions)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 639
Title: VWhat is the lifetime of declarations in conditions
Secti on: 6.4 [stnt.sel ect]
St at us: active
Descri pti on:
> struct T { T(int); ~T(); operator bool () const; /*...*] };
>
> void f(int i)
> {
> while (Tt =1i) { /* do sonething with 't’ */ }
>
g }

> How often is t constructed/destroyed?

Anot her exanpl e:
for (T *p = first
T *next = p->next();
p = next)
{ p->val =1, }

Sol ution 1:
each time the loop is entered/ exited.

Sol ution 2:
only once, making the [oop equival ent to:
{
Tt =1i;
while (t) { /* do sonething with "t’ */ }
}

Resol uti on:

Request or: Jerry Schwar z
Owner : Josee Lajoie (Object Mddel)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 635
Title: |l ocal static variable initialization and recursive function
calls
Secti on: 6.7 [stnt.dcl]
St at us: active
Descri pti on:
int foo(int i) {
if (i == 0) return i;
static int x (foo (i-1));
return x;
}
foo (10)

What is the value of x after it has been initialized?
Resol uti on:

Request or: Neal M Gafter
Owner : Josee Lajoie (Initialization)
Emai | s:

Papers:

Chapter 7 - Declarations

Work G oup: Core
| ssue Nunber: 646
Title: Can a using declaration refer to a hidden base class nenber?
Secti on: 7. 3. 3 [nanmespace. udecl]
St at us: active
Descri ption:
struct A {
typedef int T;
b
struct B: A {
pr ot ect ed:
typedef double T;
b
struct C: B {
using AT,
b

Is the using declaration above well -forned?
Resol uti on:

Request or:

Owner : St eve Adantzyk (Nanme | ook up)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 650

Title: How does name | ook up proceed for the name in a using
decl aration?

Secti on: 7. 3. 3 [namespace. udecl]

St at us: active

Descri ption:

nanespace A {
class X { };
void X();

}

void func() {
using A : X //1
X(); [l calls function A :X
struct X x; // declares x to have type A : X ???

}

Are the class nane A:: X and the function name A:: X both nmade visible
by the using declaration on line //1?
Resol uti on:

Request or: Mke MIler

Owner : Steve Adantzyk (Name | ook up)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 612

Title: nane | ook up and unnamed nanmespace nenbers
Secti on: 7. 3.4 [nanespace. udi r]

St at us: active

Descri ption:

par agraph 5 says:

"I'f nane | ook up finds a declaration for a nane in two different
nanespaces, and the declarations do not declare the sane entity
and do not declare functions, the use of the nanme is ill-fornmed.”

Consi der the program

struct S { };
static int S

int foo() { return sizeof(9); }

The sizeof will resolve to the static int S, because nontypes are
favor ed.

The standard says that unnaned namespaces will deprecate the use of
static so we should be able to rewite the program as:

struct S { };
nanespace {
int S

int foo() { return sizeof(S); }

However, the sizeof beconmes anbi guous according to 7.3.4 para 5

because the two S are fromdifferent nanespaces. Is this right?

Doesn’t this nean that static should not be deprecated?
Resol uti on:

Request or:

Owner : St eve Adantzyk (Nanme Look up)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 78 (al so WM 38)

Title: Li nkage specification and calling protoco
Secti on: 7.5 [dcl.link] Linkage Specifications

St at us: active

Descri pti on:

extern "C' {
/1 Typedef defined in extern "C' bl ocks:
/1 What is the linkage of the function pointed at by '"fp'?
typedef int (*fp)(int);

/1 Type of a function paraneter:
/1 What is the linkage of the function pointed at by 'fp2 ?
int f(int (*fp2) (int));

/1 Can function with C linkage be defined in extern "C'
/'l bl ocks?
int f2(int i) { returni; }

/1 Can static function with C linkage be defined in
/'l extern "C' bl ocks?
static int f3(int i) { returni; }
}
If function declarations/definitions placed inside the extern "C'
bl ock have different properties fromthe ones placed outside these
bl ocks, many areas of the C++ | anguage will have to be aware of
di fference.
i.e.
a. function overloading resolution
b. casting
one will need to be able to cast froma pointer to a function
with linkage "X' to a pointer to a function with |inkage "Y".
In short, it needs to be deternmned to what extent the linkage is
part of the type system

[JL:]
The standard shoul d not force inplenmentations to accept the
foll owi ng code
extern "SoneLi nkage" int (*ptr)();
int (*ptr_CXX)();
ptr CXX = ptr; // 1
i.e. an inplenmentation should be able to issue an error for
line (/1 1).

See 95-0122/ N0722 for a proposed resol ution

Core 1 discussed this issue in Monterey. The consensus the group

seenmed to converge towards was to leave it inplenentation defined

whet her or not the |inkage specification is part of the type.
Resol uti on:

Request or: John Arnmstrong (j ohna@urz-ai.con
Owner : Josee Lajoi e (Linkage)
Emai | s:

core-1583, core-1584, core-1585, core-1586, core-1587, core-1589
core-1590, core-1591, core-1594, core-1595, core-1597, core-1598
core-1599, core-1608, core-1609, core-1612
core-920 (Hansen),core-985 (O Riordan), core-1064 (M1l er)

Papers: 94-0034/ N0421

Work G oup: Cor e Language

| ssue Nunber: 420

Title: Li nkage of C++ entities declared within ‘extern "C''.
Secti on: 7.5 [dcl . link] Linkage Specification

St at us: active

Descri ption:

G ven a declaration or definition of some C++ entity (e.g. a data
menber, a function nmenber, and overl oaded operator, an anonynous

uni on object, etc) whose existance within an otherw se standard
conform ng programwitten in ANSI/I SO C woul d be a violation of the
| anguage rules, what is the effect of the linkage specification on
the declarations/definitions of the C++ specific entities?

Exanpl e:
extern "C' {
struct S {
i nt data_nenber;
s

int operator+ (S& int);

Resol uti on:

Request or: Ron Guil nette

Owner : Josee Lajoi e (Linkage)

Emai | s:

Papers:

Work G oup: Cor e Language

| ssue Nunber: 616

Title: Can the definition for an extern "C' function be provided in
two di fferent nanespaces?

Secti on: 7.5 [dcl.link] Linkage Specification

St at us: active

Descri pti on:

Is the followi ng conpilation unit valid?

nanespace A { extern "C"' int f() { return 1; } }
nanespace B { extern "C' int f() { return 2; } }

In other words, have | defined two different functions with the
signature "f()" (valid), or have | provided two definitions for the
same function (invalid)?

| don't find an answer to the question in the draft.
[...
Fromthe library inplenmentation viewoint, it would be nice if a
non- C++ | i nkage specification neant that the namespace nanme was in
some sense an "optional™ part of the function s nane:

extern "C" void f() { } // A:f() and B::f() refer to this function

But we still want this property:

nanespace A { extern "C' void f(); }
void foo() {
f(); // error, f undeclared

}

void bar() {
using A :f;
f(); // ok

The extern "C' function f can be defined in any nanespace or
outside all nanespaces; there can be only one definition

That is, the extern "C' affects the |linkage of the nane in such a
way as to ignore the nanespace name, but does not affect the
scope of the name in the C++ source program

Al so:
That solution | eaves open the problem of global variables in the
Clibrary. Atypical inplementation of errno is to make it a
gl obal int:

nanespace std { extern int errno; }
How can this be the same object as the errno in the Clibrary?
(An add-on C++ inplenentation does not have the option of
replacing the Clibrary.)

| suggest we give extern "C' for data the sane effect on the nane
as for functions. W would then wite
nanespace std { extern "C'" int errno; }

std::errno = 0; // sets the errno in the Clibrary
Resol uti on:

Request or: Steve O amage
Owner : Josee Lajoi e (Linkage)
Emai | s:
core-6303
Paper s:

Chapter 8 - Declarators

Work G oup: Core
| ssue Nunber: 636
Title: Can a typedef-name be used to declare an operator function?
Secti on: 8. 3 [dc. nmeani ng]
St at us: active
Descri pti on:

typedef int I;

struct S {

operator I1(); // Is this allowed?

|
Resol uti on:
Request or:
Owner : St eve Adantzyk (Nanme Look Up)
Emai | s:
Paper s:
Work G oup: Core
| ssue Nunber: 531
Title: Is a default argunment a context that requires a val ue?
Secti on: 8.3.6 [dcl.fct.default] Default arguments
st at us: active
Descri ption:

extern struct A a_default;
extern struct B b_default;
struct A {

void f(B = b_default); //1

struct B {

void f(A = a_default);
¥
A a_default;
B b_default;
inline void A:f(Bb) { /* ... */ }
inline void B::f(Aa) {/* ... * }

Is this valid code?
Is the default value only needed if and when the function is called
with less than the full nunber of argunents?

Pr oposed Resol uti on:

para 9 says
"Default argunents are eval uated at each point of call before entry
into a function."

The | val ue-to-rval ue conversi on happens when a default argunent
expression is evaluated. Therefore, the type of a default argunent
expressi on does not have to be conplete until the |value-to-rval ue
conversion takes place, that is until the function is called.

So the declaration of A::f on line //1 above is well-forned.

To nmake this clear, the followi ng could be added to the Wp:
"The lvalue to rvalue conversion on a default argument expression
takes place at the point of call."

Resol uti on
Request or: Fer gus Hender son
Owner : Steve Adantzyk (Default Arguments)
Emai | s:
core-5884
Papers:
Work G oup: Core

| ssue Nunber: 640

Title: default argunments and using decl arations
Secti on: 8.3.6 [dcl.fct.default] Default argunents
st at us: active

Descri pti on:

para 9:

"When a declaration of a function is introduced by way of a using
declaration (7.3.3), any default argument information associ ated
with the declaration is inported as well."

Box 17:
Can additional default arguments be added to the function thereafter
by way of redeclarations of the function?

nanespace N {
void f(int, int);
}

using N :f;
extern int a;

void f(int, int =a); // Is this well-forned?

/1 Where is the default argunent useabl e?

void g() {
f(16); //1: ok?
}

nanespace N {

void g() {
f(16); //2: ok?
}

}

Can the function be redeclared in the nanmespace with added defaul t
arguments, and if so, are those added argunents visible to those who
have inmported the function via using?

nanespace N {
void f(int, int);
}

using N :f;

nanespace N {
int a;
void f(int, int = a);

}

/1 Where is the default argunment useabl e?
void g() {
f(16); //3 ok?

Pr oposed Resol uti on:

Resol ut i

A using declaration is a declaration.

When a function is introduced by a using declaration, the accumul at ed
set of default argunents associated with the function in the

ori ginal nanespace is inmported into the scope where the using

decl aration appears. After this, the two declarations are treated

as separate declarations.

Default arguments added to the function by way of redeclarations in
the scope of the using declaration are not reflected into the
declaration in the original nanespace.

That is, line //1 above is ok

Line //2 is ill-formed because the declarations for f in nanespace
N do not specify any default argunents.

Default arguments added to the function by way of redeclarations in
the original namespace are not reflected into the using declarations
for that function.

That is, line //3 is ill-formed because the declarations for f

in global scope do not specify any default argunents.

This seens to follow the nodel already in the WP for additiona
declarations in the original nanmespace follow ng a using declaration
see 7. 3. 3[nanespace. udecl] para 8.

on:

Request or:

Onner :
Emai | s:
Paper s:

St eve Adantzyk (Default Argunents)

Chapter 9 - d asses

Work G oup: Core
| ssue Nunber: 505

Title: Must anonynous uni ons decl ared in unnanmed nanespaces al so be
decl ared static?
Secti on: 9.5 [class.union] Unions
St at us: active
Descri ption:
9. 5p3 says:

"Anonynous uni ons decl ared at nanespace scope shall be declared
static."

Must anonynous uni ons decl ared in unnanmed nanespaces al so be decl ared
static?

If the use of static is deprecated, this doesn’t make nmuch sense

Pr oposal

Repl ace the sentence above with the foll ow ng:

"Anonynous uni ons declared in a naned nanespace or in the globa
nanespace shall be declared static."

This is related to i ssue 526.

Resol uti on:
Request or: Bill G bbons
Owner : Josee Lajoie (linkage)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 655
Title: When is storing into another union nmenber ill-fornmed?
Secti on: 9.5 [class.union] Unions
St at us: active
Descri ption:
Here is a programwhich is ill-forned in SO C, but I cannot find any
wording in the C++ working paper which would nake it ill-fornmed in
Ct++:
uni on {
struct A {
doubl e w;
| ong doubl e x;
}oa
struct B {
| ong doubl e v;
doubl e z;
} b;
Py
int main() {
u.b.y = 0.0;
u.a.x = u.b.y;
}

| SO C disallows this because of the overlap. Since the
| val ue => rval ue conversion of u.b.y occurs before u.a.x is nodified,
this code woul d appear to be valid C++.

If the menbers were aggregate instead of scalar types, this would be
implicitly ill-formed. For exanple:

struct tag { int x[1000]; int y[1000] };

uni on {
struct A {
struct tag w
| ong doubl e x;
boa
struct B {
| ong doubl e v;
struct tag z;
} b
Pou

Once the first array elenent is copied, the entire union nmenber from
which it cane becones invalid - because sonething has been stored

i nto another union nmenber. So the usage is already ill-forned for
aggr egat es.

But what about scalars? 1In the original exanple the source and
destination overlap, but does the execution nodel say that an entire

scalar is fetched frommenory before the store begi ns?
O should C++ have the sane restriction on overlap as |1SO C?

Resol uti on:

Request or: Bill G bbons

Owner : Josee Lajoie (Object Mdel)
Email s:

Paper s:

Work G oup: Core

| ssue Nunber: 47

Title: enum bitfields - can they be declared with < or > bits than
required
Secti on: 9.6 [class.bit] Bitfields
St at us: active
Descri ption:
enum ee { one, two, three, four };
struct S {
ee bit:1; [11: allowed?

ee bit: 64; /12: allowed?
char bit:64; //3: all owed?

H
ANS|I C says the follow ng:
"The expression that specifies the width of a bit-field shal
not exceed the nunber of bits in an object of conpatible type."

Shoul dn’t C++ say sonething simlar?

Pr oposed Resol uti on:

Possi bl e Sol uti ons:

1) mni mum | engt h:

0 solution 1:
| npose a nini num | engt h.
"The width of a bit-field shall be sufficient to hold all of the
val ues of the bit-field s type."
This makes line //1 above ill-fornmed.

0 solution 2:
| npose no m ni num | engt h.
In C, a bit-field can be declared with fewer bits than what is
necessary to hold the val ues of an object of conpatible type.

0 proposed resol ution
solution 2.
This is comopn practice.

2) maxi num | engt h:

o solution 1:
| npose a nmaxi num | engt h.
"The width of a bit-field shall not exceed the nunber of bits in

an object of the sanme type."

This makes lines //2 and //3 above ill-forned.

o solution 2:
| npose no maxi num | engt h.

0 proposed resol ution
At the Santa Cruz neeting, folks preferred solution 2
Fol ks believed that inposing a limt on the width of a bit-field
was not necessary. Yes, if the width of a bit-field is greater
than the width of an object of the sane type, the value stored in
the bit-field will be truncated when it is fetched out of the
bit-field. Folks believed this was something users should be
aware of. Fol ks believed that the |anguage shoul d not prevent

users fromdeclaring a bit-field with a width greater than the
wi dth of an object of the sane type if they wanted to.
Resol uti on:

Request or: ?
Owner : St eve Adantzyk (Types)
Email s:
core-1578
Papers:

Chapter 10 - Derived cl asses

Work G oup: Core

| ssue Nunber: 624

Title: class with direct and indirect class of the same type: how
can the base class nenbers be referred to?

Secti ons: 10.1 [class.mi] Miltiple base cl asses

St at us: active

Descri ption:

para 3 says
"[Note: a class can be an indirect base class nore than once and can
be a direct and indirect base class.]"
The WP shoul d describe how base cl ass nenbers can be referred to,
how conversion to the base class type is perfornmed, how
initialization of these base class subobjects takes place.
Resol uti on:

Request or:

Owner : Josee Lajoie (Object Mdel)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 446

Title: Can explicit qualification be used for base class navigation?
Secti ons: 10.1 [class.mi] Miltiple base cl asses

St at us: active

Descri ption:

Can explicit qualification be used for base class sublattice
navi gati on?

class A {
publi c:

int i;
b

class B : public A { };
class C: public B{ };

class D {
publi c:
int i;
b
class E: public D{ };
class F: public E { };
class Z : public C, public F { };
Z z;
... z.FR:E:D:i; I/l is qualification allowed here to navigate the

/'l base class sublattice?
Resol uti on:

Request or: Bill 4 bbons

Owner : St eve Adantzyk (Nanme Look up)
Emai | s:

Paper s:

Chapter 11 - Menber Access Contro

| ssue Nunber: 656

Title: access of nanmes used in base cl auses
Secti on: 11. 4[cl ass. fri end]
St at us: active
Descri pti on:
class A
class T1 {
friend class A
class T2 { };
b
class A: T1::T2 { [11: can T1::T2 be used here?
class B: T1:: T2 { //2: how about here?
|
b
Pr oposed Resol uti on:
Either //1 or //2 is ill-forned:
ei t her:
/11 is ill-formed:
Since the base-clause of class A (i.e., the befriended class) is
not part of the declarations for the nenbers of A the private
menbers of the class granting friendship cannot be used in the
base-cl ause of A
or:
/12 is ill-formed:
Access for nanes in the base-clause of a class is checked in the
same way as access for nanmes referred to in the nenber functions of
the class. In this case, since A.:Bis not a friend of class T1,
the base clause for A :B cannot access T1::T2, a private nenber of
T1.
| prefer solution 1).
Resol uti on:
Request or:
Owner : St eve Adantzyk (Access Specifications)
Email s:
Paper s:
Work G oup: Core
| ssue Nunber: 653
Title: What does it nean for nested classes if a class-nane is
inserted into the scope of the class itself?
Secti on: 11. 8[cl ass. access. nest |
St at us: active
Descri ption:

9[cl ass] para 2 says:

"The class-nanme is also inserted into the scope of the class
itself. For purposes of access checking, the inserted class name
is treated as if it were a public menber nane."

d ven:
class A {
class B {
class C{
B* pbil,; /11 1egal ?
A : B pb2; /12 1egal ?
b
b
b

Because class nane B is inserted as a public nmenber nanme in the
scope of its class, does this nean that C can refer to B even though
Bis a private nenber of A? Is the answer different if Bis referred
to as A :B?

Proposed Resol uti on:

Because Bis inserted in its own class scope as a public nenber,

accessing B fromthe scope of a nested class is well-forned
event hough B is a private nenber of its enclosing class.

| believe the answer should be the sane whether B is referenced just
as "B" or whether it is referenced as a qualified name "A :B".

11. 8[cl ass. access. nest] shoul d probably say sonething like this:
"Because a class nane is inserted inits own class scope as a public
menber (_class_), accessing the class-nane fromthe scope of a
nested class is well-fornmed even if the class is a private nenber
of its enclosing class."
Resol uti on:
Request or:
Owner : St eve Adantzyk (Access Specifications)
Emai | s:
Papers:

Chapter 12 - Special Menber functions

Work G oup: Core
| ssue Nunber: 598
Title: Shoul d a diagnostic be required if an rvalue is used in a

ctor-initializer or in areturn stnt to initialize a
ref erence?

Secti on: 12.2 [cl ass. tenporary]
St at us: active
Descri pti on:

12. 2p5:

"A tenporary bound to a reference in a constructor’s ctor-initializer
(12.6.2) persists until the constructor exits. .
A tenporary bound in a function retrun statenment (6.6.3) persits
until the function exits."

This actually nmeans that there is no reliable way to initialize a

ref erence nenber or a return value of reference type with an rval ue

expression. Gven that, a diagnostic should be required.
Resol uti on:

Request or: Tom Pl um

Owner : Josee Lajoie (Object Mdel)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 138 (WM 89)

Title: When are default ctor default args evaluated for array
el ement s?

Secti on: 12.6 [class.init] Initialization

St at us: active

Descri ption:

FromMke MIler's list of issues.
WWM 89. Are default constructor arguments eval uated for each el enent
of an array or just once for the entire array?
int count = O;
class T {
int i;
publi c:
T(int j =count++) i (]) {}
~T () { printf ("%, %\n", i, count); }

1
T arrayO Ts[4];

Shoul d this produce the output :-
0,4

WN P
EEE

or should it produce :-

cooa

1
1
1

0,1
Proposed Resol uti on:
8.3.6[dcl.fct.default] para 9 says:
"Default argunents are evaluated at each point of call before the
entry into a function."
This should also be true if the function call is inplicit.
That is, the test case above shoul d produce the first output
suggest ed above.

Para 9 should be clarified to say that it also applies to functions
that are inplicitly called.
Resol uti on:

Request or: Mke MIler / Martin O Ri ordan
Owner : Steve Adantzyk (Decl arat ors)
Emai | s:
core-668
Papers:
Work G oup: Core
| ssue Nunber: 626
Title: VWhat is the formof the inmplicitly-declared operator=if a
base cl ass has Base: : operator=(B)?
Secti on: 12. 8 [cl ass. copy]
St at us: cl osed
Descri pti on:

What is the formof the inmplicitly-declared operator=if the class
has a base class that has a copy assignment operator that does not
take a reference paraneter, i.e.
Base: : oper at or =(Base)
5
para 10 does not clearly nention this.
Resol uti on:
This was handl ed editorially in the pre-Stockhol mversion of the W
Such class gets a copy assignnent operator of the form
Derived: : operat or=(const Derived &)

Request or:

Owner : Josee Lajoie (Object Mdel)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 536

Title: When can objects be elimnated (optinized away) ?
Secti on: 12.8 [cl ass. copy]

St at us: active

Descri ption:

Par agraph 15 indicates that an inplenentation is allowed to elininate
an object if it is created with the copy of another.

| SSUE 1:
However, this is in clear contradiction with other W text:
3.7. 1] basic.stc.static] says:
"I'f an object of static storage duration has initialization or a
destructor with side effects; it shall not be elimnmnated even if
it appears to be unused."

3.7.2[basic.stc.automatic] says:

"If a nanmed automatic objects has initialization or a destructor
with side effects; it shall not be destroyed before the end of its
bl ock, nor shall it be elimnated as an optinization even if
appears to be unused."

So which is right?
Many have suggested different ways to resolve this difference:

Andr ew Koeni g [core-5975]:
The correct way to resolve the contradiction is to say that copy
optinization applies only to | ocal objects.

Patrick Smith [core-6083]:
1) Just weaken 3.7.1 and 3.7.2 so they can be overridden by the
copy constructor optim zation.

2) Restrict the copy constructor optinmization to only elininate
tenporaries representing function return val ues.

3) Require the programmer to explicitly mark the classes for
whi ch the copy constructor optimzation is pernmitted even
though it would violate 3.7.1 or 3.7.2.

4) Require the programrer to explicitly mark the classes for
whi ch the copy constructor optimnization is not pernitted when
it wuld violate 3.7.1 or 3.7.2.

| SSUE 2:

Jerry Schwarz in core-5993

What may be of concern is not side effects in general, but resource
allocation. E.g. if Thing is intended to obtain a lock that is

held until it is destroyed, then you do i ndeed have to be carefu
about the semantics you give to the copy constructor.
{ .
Thing outer ; // get the I|ock
{
Thing inner = outer ; // copy constructor increnments
/1 count on | ock.
/1 do stuff that requires the | ock
inner.release() ; // decrement count
/1 do stuff that doesn't require the |ock
}
/1 do stuff that still requires the |ock.

}

The optim zation allows outer and inner to be aliased, and the
explicit release in inner may cause the |ock to be rel eased too
early.

Is Jerry’'s concern worth worrying about?
Two possible resolutions were proposed:

Jerry suggested the foll ow ng:
When we introduced the "explicit" keyword | renenber considering
what it would nean on copy constructors and thinking about the
possibility that it would suppress this optimzation

Jason Merrill proposed in c++std-core-5978:
Per haps the | anguage in class.copy should be nodified so that it
only applies when the end of one object’s lifetine coincide with
the beginning of its copy’'s lifetine.
Resol uti on:
Request or: John Skal l er

Omner :

Josee Lajoie (Object Mddel)

Emai | s:

Papers:

Chapter 13 - Overl oading
Work G oup: Core

| ssue Nunber: 652

Title: Is a derived-to-base conversion required to be inplenented by
a copy constructor of the base class?

Secti on: 13.3.3.1 [over.best.ics]

St at us: active

Descri ption:

Is a derived-to-base conversion required to be inplenented by a copy
constructor of the base class? O is it always the best constructor
of the base class that’'s used?

i.e., which constructor is called in the foll owi ng exanpl e:

cl ass B;

class D

class B {
publi c:
B(const B&); /1 #1 - a copy constructor
B(const D&); [l #2 - a different constructor

}s
class D. public B { };

class Q{
publi c:

H
voi d funcl(B)

operator D ();

void func2() {

D d;
Qa;
Bb(d); /1 case 1. #1 or #2?
B b2 = d; /'l case 2: #1 or #27?
funcl(d); /1 case 3. #1 or #2?

}

Case 1 is direct initialization, so presunably all constructors are
considered, thus #2 is the one that is used.

For case 2, 8.5[dcl.init] paragraph 12, 4th bullet, 2nd sub-bull et
woul d appear to apply, in which case both #1 & #2 are consi dered, so
#2 is used.

Case 3 should be the sane as case 2, but 13.3.3.1.2 [over.ics.user]
par agraph 4 says:

"A conversion of an expression of class type to the sane class type
is given Exact Match rank, and a conversion of an expression to a
base class of that type is given Coversion rank in spite of the
fact that a copy constructor (i.e., a user-defined conversion
function) is called for those cases."”

Thi s paragraph nmakes the assunption that the only way to perform such
a conversion is by copy constructor, but constructor #2 can al so
performthis conversion.

Proposed Resol uti on:

1) Require that in all cases where a class is being initialized by a

derived cl ass, the copy-constructors are the only ones consi dered,
i.e. 1in the exanple above, all cases would resolve to #1.

2) In all places where a copy-constructor is called for, al
constructors of the target class are actually considered, i.e.
change the phrase "a copy-constructor is called" to "a constructor
is called to copy ...". The one selected by overload resol ution
is the one used, even if that use does not include calling it (eg.
in cases of elimnation of tenporaries). |In the above exanple,
this would resolve all cases to #2. The special status of
"copy-constructor’ then only affects whether one is inplicitly
generated (and what its signature is).

Ben has a slight preference for option #2.

Resol uti on:
Request or: Ben Schrei ber
Onner : St eve Adantzyk (Type Conversi ons)
Emai | s:
core-6667
Papers:
Work G oup: Core

| ssue Nunber: 658

Title: Shoul d decl arations for binary built-in operators only
accept operands of the sane type?

Secti on: 13.6 [over. built]

St at us: active

Descri pti on:

Currently prototypes for the built-in operators accept operands of
different types. For exanple, the signed integral subset of the
"operator+" prototypes is:

int operator+(int, int);

| ong operator+(int, 1ong);
| ong operator+(long, int);
| ong operator+(long, |ong);

Sone exanpl es argue strongly for another nodel:
* The operators only take operands of the same type (so the
conversions are inplied as part of calling the operators).

Consi der:

struct A {
operator int();
operator |ong();

b
void f(A a) {
a + 0; /1 ill-forned
}
This is anbiguous: the two builtin functions

int operator+(int, int);
| ong operator+(long, int);

are both equally good nmatches, and so overload resolution fails.
Somewhat nore surprisingly:
struct A {

operator int();
operator |ong();

H

void f(A a) {
int x = a; [l ill-formed
}

This is al so anbi guous; the rel evant prototypes are:

int& operator=(int& int);
int& operator=(int& 1|ong)

Pr oposed Resol uti on:
There are several options here:

(1) Do nothing. This leads to very surprising anbiguity errors,
especially with assignnent.

(2) Change the prototypes for assignnent so that they require
the operands to have the sane type. This nakes assi gnnment
wel | - behaved at the cost of inconsistency with the other
operators; and the first exanple remains counter-intuitive.

(3) Change all the prototypes. This nakes both exanples
intuitive. It is also nore consistent with the rules
in clause 5 (by one interpretation).

Bill Strongly favors (3).
Resol uti on:

Request or: Bill G bbons
Ownner : St eve Adantzyk (Type Conversi ons)
Emai | s:
core-6704
Paper s:
Work G oup: Core
| ssue Nunber: 659
Title: Shoul d the prototypes for built-in operators properly take
into account arithnetic conversions?
Secti on: 13.6 [over. built]
St at us: active
Descri ption:
Consi der:

int f(int, int);
long f(long, long);

void g() {
f(3, 4L); [// anbiguous - an existing problem

int operator+(int, int); // proposed prototypes
i nt operator+(long, |ong);

void g() {
3 + 4L /1 ambi guous under existing overloading rules
}

Thi s probl em occurs because arithnetic conversions break a key design
principle of conversions:
The inverse of a standard conversion is normally *not* a standard
conversi on.
This is true for everything except the arithnetic conversions. And
that exception pretty nmuch breaks overloading for arithnetic
par amet ers

In the first exanpl e above, the fact that "long" => "int" is a
standard conversion nakes the first function callable, which | eads
to the ambiguity.

Proposed Resol uti on:

Several possible ways to inprove the current rules:

* Change the prototypes of all the operators (issue 658), and change
the overloading rules so that when calling builtin arithmetic
operators, conversions which go forwards in the sequence (long
doubl e, double, float, unsigned |long, long, unsigned int, int) are
not considered, plus the special case that "unsigned int" => "l ong"
is only considered if it is val ue-preserving.

* Change the prototypes of all the operators (issue 658), and change
the overloading rules so that if any call is found to be anbi guous,
it is reconsidered with the above restrictions.

* Deprecate the "long" => "int" and rel ated standard conversi ons, so
that there is sone hope of fixing this in the next revision of the

st andar d.

Bill likes the second option best.
Resol uti on:
Request or: Bill G bbons
Owner : Steve Adantzyk (Type Conver sions)
Emai | s:

core-6710
Paper s:

Chapter 15 - Exception Handling

Work G oup: Core
| ssue Nunber: 647
Title: Is it inplenmentation-defined or unspecified how the nenory
for the exception object is allocated?
Secti on: 15.1 [except.throw
St at us: active
Descri pti on:
para 4:

"The menory for the tenporary copy of the exception being thrown is
all ocated in an inplenentation-defined way."

Shoul dn’t this say "unspecified".
Must i nmpl enent ati ons docunment how nenory is allocated?
Resol uti on:

Request or:

Owner : Bill G bbons (exceptions)

Emai | s:

Papers:

Work G oup: Core

| ssue Nunber: 541

Title: Is a function-try-bl ock allowed for the function main?
Secti on: 15. 3 [except. handl e] Handling an exception

St at us: active

Descri pti on:

I assume the new syntax that allows for function-try-block is also
allowed if the function is main:

mai n()
try {

}

catch (...) { }
What is the effect of the catch(...) in main if the constructor for
an object with static storage duration throws an exception (and the
constructor does not catch the exception)?

Because the WP does not dictate a precise nonent for the construction

of objects with static storage duration (these objects can be
constructed at any tine before the first statenment in main or...), is
it inplenmentation-defined whether the handler in nain catch an
exception thrown froma constructor for a global static object? O
is the catch in main guaranteed to catch (or guaranteed not to catch)
such an exception?

Resol uti on:
This following tentative resolution was adopted by the Core Il WG
at the Santa Cruz neeting and it will be presented to the committee
for a vote at the Stockhol m neeti ng:

Function try-bl ocks are allowed on main(). But static ctors & dtors
are logically executed before main() is entered and after main()
exits, so exceptions thrown by static ctors/dtors are not caught.
This inplies a slight wording change in the description of static
ctors/dtors.

Request or:
Owner : Bill G bbons (exceptions)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 542
Title: What exception can a reference to a pointer to base catch?
Secti on: 15. 3 [except. handl e] Handling an exception
St at us: active
Descri ption:
15. 3 says:

A handler with type T, const T, T& or const T& is a match for a
t hrow expression with an object of type Eif

[3] Tis a pointer type and Eis a pointer type that can be
converted to T by a standard conversi on.

This allows code |ike this:

struct A { };
struct B { };
struct D: A B{ };
D d;

try {
D* pd = new D
t hrow pd;

}
catch (B*& pb) {// OK, B*& is a valid handl er
/'l for a throw of type D

}
However, code equivalent to this outside of the exception handling
try/catch nmechanismis disallowed, i.e.

B*& pb = new D, // error

The current |anguage rules (8.5.3) require that the reference be of
const type for this initialization to be valid. i.e.

B* const & pb = newD; // K

preventing the pointer referred to by the reference from being
nmodi fied with the value of a pointer of a different type.

Goi ng back to the original exanple with EH, 15.3 all ows soneone to
wite code as follows in the handl er, code which nodifies the
original exception thrown:

catch (B*& pb) {
pb = new B;
}

Allowing this doesn't seemto make nuch sense to ne because if the
programever tries to refer to the original exception throwmn as a D*
after the assignment to pb has taken place (using a rethrow, for
exanpl e) undefined behavior is al nbst guaranteed to take place i.e.
the exception of type D* has becone an object of type B* and the type
system has been conpl etely bypassed.

| believe 15.3 should say that a handler with type T& is _not_ a
match for a throw expression with an object of type Eif T and E are
poi nter types that are not of the sanme types.

There may be ot her adjustnents needed as well to nake 15.3 nimc nore
closely the rules on reference initialization

Resol uti on:
Core Il agreed with the proposed resolution at the Santa Cruz
meeting. This will be presented for a vote at the Stockhol m neeting.

Request or:

Owner : Bill G bbons (exceptions)

Emai | s:

Paper s:

Work G oup: Core

| ssue Nunber: 587

Title: Can a pointer/reference to an inconplete type appear in a
catch cl ause?
Secti on: 15. 3 [except. handl e] Handling an exception
St at us: active
Descri ption:
15. 3/ 1 says:
"The exception-declaration [in a catch clause] shall not denote an
i nconplete type."
This comes from 92-120/N0197 i ssue 3. 3:
"No, an inconplete type can not appear in a catch cl ause.
A pointer or reference to an inconplete type nay appear in a catch
cl ause, however."
Shoul d pointers and references to inconplete types al so be disall owed
in catch cl auses?
The resolution of issue 3.3 (and the related requirenent that
i nconpl ete types be allowed in exception specifications) place
unr easonabl e constraints on inpl enentations.
In particular, they force inplenentations to handl e exceptions by
mat chi ng the *nanes* of classes. This is because it is not possible
to generate type information for an inconplete class. Since the
cl ass need not ever be conplete, an inplenmentation may not rely on
type information generated in another translation unit; rather, it
must associate the inconplete type with the appropriate type
i nformati on by searching for the type nane.
Is the need for pointers/references to inconplete types in catch
clauses sufficient to justify these kinds of restrictions on the
i npl ementations? And sinmilarly, is the need for inconplete types in
exception specifications of function definitions sufficient to
justify these restrictions?
Resol uti on:
Core Ill is leaning towards requiring conplete types

This will be brought up for a vote at the Stockhol m neeting.

Request or: Bill G bbons

Owner : Bill G bbons (exceptions)

Emai | s:
ext - 3367
Papers:
Work G oup: Core
| ssue Nunber: 648
Title: Is it inplenmentation-defined or unspecified whether the stack
is unwound before ternminate is called?
Secti on: 15. 3 [except. handl €] Handling an exception
St at us: active
Descri ption:
para 8:

"Whet her or not the stack is unwound before calling terminate() is
i mpl enent ati on-defined."

Shoul dn’t this say "unspecified".
Must i nmpl enent ati ons docunment whi ch one happens first?
Resol uti on:

Request or:
Owner : Bill G bbons (exceptions)
Emai | s:
Papers:
Work G oup: Core
| ssue Nunber: 588
Title: How can exception specifications be checked at conpile tine
if the class type is inconplete?
Secti on: 15. 4 [except. spec]
St at us: active
Descri ption:
| ssue 1:
struct A
struct B;

void f() throw A);
void g() throw(B) { f(); }

Because A and B have inconplete type, static checking isn't possible
because it can't be determined if B is derived fromA

[Mke Ball, ext-3386]:

"Havi ng these types inconplete here essentially obviates strong
si gnature checking, which sonme of our custoners have stated very
strongly that they want.

I think that requiring conplete types in a throw specification wll
not produce the dependenci es people are assunming. Fromwhat | have
seen, types thrown tend to be froma rather small set of classes
especially designed to be thrown as exceptions. This neans that
requiring that they be conplete would probably not have cascadi ng
effects. That is, it mght pull in the headers defining the
exception class hierarchy, but probably not a whole Iot else.”

[Andrew Koeni g, ext-3387]:
"As with function argunent types, | think it should be OK to use an
i nconplete type in an exception specification:

struct A
void f() throw(A);

as long as you conplete it
struct A{ };

before calling or defining the function:

void g() { f(): }

paragraph 2 says:

"If a virtual function has an exception-specification, al

decl arations, including the definition, of any function that
overrides that virtual function in any derived class shall have an
exception-specification at |east as restrictive as that in the base
class. "

What does "shall" mean if inconmplete types are used?
Inconpl ete types nmake it inpossible to determine if the clause is
adhered to.

[John Skaller, ext-3379]:

"A reasonable interpretation is that an inconplete type B 'is not as
restrictive as’ a type A and so this ought to require a diagnostic.
My argunment -- you can conplete B later to be anything you want, so
the throw spec of B doesn't exhibit a restriction, as required.

[Mke Ball, ext-3380]:

"One could also argue that it could al so be checked at the definition
poi nt of the overriding function, at which point it would certainly
be no burden on the programmer to require that the type be

conplete. ™
Resol uti on:
Request or: John Skal |l er
Owner : Bill G bbons (exceptions)
Emai | s:
Paper s:
Work G oup: Core
| ssue Nunber: 630
Title: What is the exception specification of inplicitly declared
speci al nmenber functions?
Secti on: 15. 4 [except. spec]
St at us: active
Descri ption:
The following programis ill-fornmed with the present W

cl ass exception {

publi c:

virtual ~exception() throw);
b
class logic_error : public exception {
b

Unfortunately it occurs in the WP itself.

The reason for it being ill-fornmed is that class logic _error gets an
implicitly declared destructor. This destructor gets the usua
exception specification, namely none, which may throw anything. This
violates the constrain that a virtual function in the derived class
must have an exception specification at |least as restrictive as that
of the base cl ass.

Pr oposed Resol uti on:
The possibilities | see at the nonent are:

al ways "t hrow anyt hi ng"

uni on of exception specification of base functions

i ntersection of exception specification of base functions

uni on of exception specification of base and nenber functions
i ntersection of exception specification of base and nenber
functions

grwhE

The sinplest solution is 1. This means any user having a virtual
destructor with an exception specification nust add a destructor
declaration in each derived class (this includes the std library).

A nore rel axed and save solution would be 4. Then the exception
specification of the generated functi on woul d never be viol ated, but
it would be convenient when being in single inheritance. This would
al so match the usual rules for inheriting. Wien you do not declare an
overriding function in a derived class, the exception specification
of the base function will be kept. Wth option 4 this would al so

(al most) hold for the inplicitly declared functions.

The versions 2, 3 and 5 would lead to situations, where the exception
specification of a generated function is violated. | would see this
as not acceptabl e.

Resol uti on:
M ke Anderson will prepare a paper for the pre-Stockhol mnailing.

Request or: Erwi n Unruh
Owner : Bill G bbons (exceptions)
Emai | s:
core-6398
Papers:
Work G oup: Core
| ssue Nunber: 631
Title: Must the exception specification on a function declaration
mat ch the exception specification on the function definition?
Secti on: 15. 4 [except. spec]
St at us: active
Descri ption:

para 2 says

"If any declaration in any translation unit of a programof a
function has an exception-specification, all declarations including
the definition, of that function shall have an exception
specification with the same set of type-ids."

para 5 says

"Calling a function through a declaration whose exception
specification is less restrictive than that of the function’s
definitionis ill-fornmed."

First, this is contradictory. Mist the declarations be the same
or can sone declarations be |less restrictive than the definition?

Second, shouldn’t the behaviour be undefined, not ill-formed with no
di agnostic required (para5)? | don't understand how runtinme
behavi our can cause the programto become ill-fornmed. How can a
program be either ill-forned or well-formed depending on its input?
Resol uti on:
Request or: Fer gus Hender son
Owner : Bil | G bbons (exceptions)
Emai | s:
core-6391, core-6401
Paper s:
Work G oup: Core
| ssue Nunber: 657
Title: Must the exception-specification of a declaration be nore or
I ess restrictive than the exception-specification of the
definition?
Secti on: 15. 4 [except. spec]
St at us: active
Descri ption:

par agr aph 5 says:

"Calling a function through a declaration whose
exception-specification allows other exceptions than those all owed
by the exception-specification of the function’s definition is
ill-formed. No diagnhostic is required."

This seens inconsistent with the rules for virtual functions and
assignnent to function pointers where such situations would make the
programill -forned.

Pr oposed Resol uti on:
Change the wordi ng above to:

"Calling a function that has a definition specifying an
exception-specification that allows other exceptions than those
al | oned by the exception-specification of the function
declaration visible at the point of call is ill-forned. No
di agnostic is required."”

Resol uti on:

Request or: Patrick Smith
Owner : Bill G bbons (exceptions)
Emai | s:
core-6521
Papers:
Work G oup: Core
| ssue Nunber: 649
Title: Should it be mandated that term nate be called upon interna
error?
Secti on: 15.5.1 [except.tern nate]
Descri pti on:

The WP states that one of the situations in which term nate()
is called is:

- when the inplenentation’s exception handling nmechani smencounters
sone internal error

Shoul d this requirenment be renoved?

This was di scussed briefly at a Core-3 session in Santa Cruz,

and general opinion was that this requirenment should be renoved,
since an internal error condition already inplies undefined behavi or
Most i npl enentations woul d chose to call abort() in this situation
rather than terminate(), since there’'s no guarantee that term nate()
will be able to do anything useful wthout running into the same
internal error condition

The ARM s original wording for this situation was
- when the exception handling nechanismfinds the stack corrupted

whi ch suggests trying to deal with a user-caused error rather
than an inplenentation error, but it’'s still undefined behavior

The ARM wording stayed in the WP until the April 95 version, when
it changed to its current form The change doesn’'t seemto be
traceable to anything in the pre- or post-Austin mailings, but the
fact that it was changed rather than renoved suggests that soneone

thought it was worthwhile. |s there a rationale for keeping it?
Resol uti on:
Request or: Jonat han Schilling
Onner : Bi Il G bbons (exceptions)
Emai | s:
Paper s:
Work G oup: Core
| ssue Nunber: 651
Title: I s unexpected called before the stack is partly unwound?

Secti on: 15. 5.2 [except. unexpect ed]

Descri pt

i on:
int i =0;
voi d nmy_unexpect ed(voi d)
{
i =1,
throw char(’a’);
}
class A { _
~A() {1 =20)
void f(void) throw (char)
{
std::set_unexpect ed(mnm_unexpected);
A a;
throw int(1);
}

The question is: in which order are a.~A() and ny_unexpected call ed.
The answer will effect whether i has the value 1 or 2 after calling
f

Proposed Resol uti on:

Possi bl e Sol uti ons:

- the stack is not unwound, so i becones 2. This would nean that the
search for a handl er which includes the checks for exception
speci fications must precede the stack unwi nding. Core Ill has
avoi ded to make such an asunption to allow an inplementation to
fold handl er-search with stack-unw nding. This option is not
vi abl e.

- the stack is unwound, so i becones 1. For this option, the exact
pl ace of where the stack unw ndi ng stops nust be specified. Arule
of thunb woul d be:

The destructors whose exception woul d be caught by the exception
specification are execut ed.

- it is inplenmentation defined, but the result nust be either 1 or 2.
This nmeans the inplenentation nust choose one of the solutions
above.

- it is unspecified or undefined. | don't like this solution since a
call to unexpected can be solved accurately. Having a part of
undefi ned behavi our would make this conpletely unreliable. W
shoul d avoi d unspeci fied behaviour in this case.

Erwin prefers (and proposes) that the stack be unwound, but can live
with it being inplenentation-defined.

Resol uti on:

Request or: Erwi n Unruh

Owner : Bill G bbons (exceptions)
Emai | s:

core- 6485

Papers:

Chapter 16 - Preprocessing Directives
Work G oup: Cor e Language

| ssue Nunber: 661
Title: Should _ DATE__ and __TIME__ be nade | ocal e aware?
Secti on: 16. 8 [cpp. predefi ned]

St at us: active

Descri ption:

Resol uti

The description for the _ DATE _ and _ TIME__ nmcros indicate that
their values use the English format for date and tine.

Shoul d the value of the macros be nmade | ocal e specific?

on:

Request or:

Owner : Tom Pl um (C Conpatibility)
Emai | s:

Papers:

