X3J16/96-0091 WG21/N0909

Distance Type for Output Iterators

Angelika Langer (email: langer@roguewave.com)

Abstract

The distance type of an output iterator usually 1s void, 1.e. an output iterator does
not have a distance type. This proposal suggest to give the output iterator’s
distance type a useful meaning. It makes the STL more consistent and easier to
understand and extend.

1. Motivation

It was discussed to make input iterators and output iterators more consistent; for
both iterator categories the notion of the distance between two iterator positions
does not really make sense. Still, the distance type can be seen as a type that
allows to represent counts on the number of increments which can be done on an
iterator. In this sense the distance type of an input iterator is used in the count
algorithm.

Input iterators have a distance type, which usually defaults to pt rdi ff _t . Output
iterators are not supposed to have an iterator type; an output iterator’s distance
type therefore is usually voi d. However, it is hard to explain why one can express
the count of increments of an input iterator by means of the input iterator’s
distance type, but the same is not true for an output iterator.

In order to show the inconsistency, consider the algorithms search_n, fill_n, and
generate_n. They all have a size type as a template parameter. From a logical
point of view the best choice for the size type is the respective iterator’s distance
type, as s it for the count algorithm. However, fill_n and generate_n work with
output iterators, which do not have a distance type.

Additionally, the lack of a distance type for output iterator makes it difficult to
implement algorithms that count the elements that they insert into an output
sequence. Such an algorithm would typically take an output iterator as an
argument and return a count. The appropriate type of such a count would be the
iterator’s distance type. However, without a distance type for output iterators, you
can’t do it. You would have the same problem we originally had with the ordinary

1-

X3J16/96-0091 WG21/N0909

count algorithm: the return type cannot be deduced from the function
arguments.! I don’t see a compelling reason why counting output should be more
difficult than counting input.

Here 1s an example of such a algorithm : It puts values, which are generated by a
generator, into an output sequence, until the generator decides that the job is
done. The algorithm returns the number of values inserted to the output
sequence.

tenplate <class Qutputlterator, class Generator>

iterator_traits<Qutputlterator>::distance_type

out put _count (Qutputlterator iter, Generator gen)

{ for (n=0; !gen.stop(); n++, *iter++=gen());
return n;

The interface of a generator to be used with my this algorithm is:

class Cenerator {
public:
Generator(...); /1 any kind of constructor
some_t ype operator () (void); /1 the function call operator
bool stop() const; /1 the end of generation indicator

Below 1s an example of an according generator. With each call it “generates” the
next element from a container that has certain properties determined by a
predicate. The generator decides how many values it generates.

tenpl ate <class Container, class Predicate>
cl ass CertainCont ai nerEl enents {
publi c:

Cert ai nCont ai ner El enent s(const Container& c, Predicate p)

_cont(c),_iter(c.begin()),_pred(p) {}
typenane Cont ai ner::val ue_type operator()(void)
{ while (!stop())
{ if (_pred(*_iter)) return *_iter++;

el se _iter++;
}
}
bool stop() const
{ return _iter == _cont.end(); }
private:

const Container& _cont;
typenane Container::const_iterator _iter;
Predi cate _pred;

b

! See X3]J16/96-0029 WG21/N0847 “Bring back the obvious definition of count()” for reference.

X3J16/96-0091 WG21/N0909

Below is an example of how the out put _count () algorithm can be used. It takes
all negative elements from a list of integers, inserts them into an output sequence,
and counts them.

list<int>1|;

ostream.iterator<int> ost(cout,"\t");

/1 populate the |ist

ostream.iterator<int>::distance_type n =

out put _count (ost, Cert ai nCont ai ner El enent s<l i st<i nt>, Negative>(l, Negative()));
Without a meaningful distance type for output iterators the return type of my
output count algorithm would be voi d in the example above, because the
distance type of an ostream iterator at present is voi d. I would have to add
another template parameter for the return type. As return types cannot be

deduced from the function arguments, the interface would look like this:

tenplate <class Qutputlterator, class Generator, class Count>
voi d
out put _count (Qutputlterator iter, Generator gen, Count& n)
{ for (n=0; !gen.stop(); n++ *iter++=gen());
return n;

which is counter-intuitive. The count should be the return type rather than a
reference parameter. This is exactly the problem that caused the introduction of
iterator _traits, so that the standard count () didn’t have to use the latter

style.

2. Proposal

I suggest to modify the predefined output iterators so that they have a meaningful
distance type. The iterators concerned are the insert iterator adaptors and the
ostream and ostreambuf iterator.

The insert iterator adaptors shall take their distance type from the container they
work on, e.g.

tenpl ate <cl ass Contai ner>
class back_insert_iterator : public
iterator<output_iterator_tag, void,typenane Container::difference_type>;

The ostream and ostreambuf iterators shall take their distance as a template
parameter that defaults to ptrdiff_t, e.g.
tenplate <class T, class Distance = ptrdiff_t>

class ostreamiterator : public
iterator<output_iterator_tag, void, D stance>;

X3J16/96-0091 WG21/N0909

3. Alternative

In Santa Cruz it was discussed to make input and output iterators more consistent

by eliminating the distance type for input iterators as well, because the notion of a

distance between two iterators does not make sense.

I think the distance type is used for two things:

* On the one hand it expresses the distance between the first and last iterator
of a range.

* On the other hand it is used to express the count of increments to an iterator,
like in count () .

With input and output iterators only the second usage makes sense. One might

therefore consider to have two separate types: a distance type and a

count type. I do not propose this, because it would introduce yet another type.

However, I do suggest to (ab)use the distance type for both purposes. Following

this line of logic, input as well as output iterators should have a meaningful

distance type, 1.e. a type different from voi d.

4. Caveat

The proposed changes depend on the availability of partial specialization. This 1s
because I made use of the iterator traits, which require partial specialization. As I
had no access to a compiler that supports this language feature, I had no chance
to test the proposed changes.

5. Working Paper Changes

In clause 24.1.6 [lib.iterator.tags| change the description of the insert iterator
adaptors and output stream and output stream buffer iterators in the header
<iterator> synopsis to:

tenpl ate <cl ass Cont ai ner >
class back_insert_iterator : public
iterator<output_iterator_tag, void,typenane Container::difference_type>;

tenpl ate <cl ass Cont ai ner >
class front_insert_iterator : public
iterator<output_iterator_tag, void,typenane Container::difference_type>;

tenpl ate <cl ass Cont ai ner >
class insert_iterator : public
iterator<output_iterator_tag, void,typenane Container::difference_type>;

tenplate <class T, class Distance = ptrdiff_t>
class ostreamiterator : public
iterator<output_iterator_tag, void, D stance>;

tenpl ate <class charT, class traits = char_traits<charT>,
class Distance = ptrdiff_t >
class ostreanbuf _iterator : public
iterator<output_iterator_tag, void, D stance>;

X3J16/96-0091 WG21/N0909

Make according changes in clause 24.3.2. [lib.insert.iterators], i.e. change the base
classes of class back_insert _iterator, front_insert_iterator and
insert_iterator fromiterator <output_iterator_tag, void, void>
to iterator <output_iterator_tag, void, typename Container::

di fference_type>.

In clause 24.4.2 [lib.ostream.iterator] and clause 24.4.4 [lib.ostreambuf.iterator]
add a second template parameter Di st ance to the class templates
ostream.iterator andostreanbuf_iterator, and change the base classes
fromiterator <output_iterator_tag, void, void>toiterator

<out put _iterator_tag, void, Distance>.

