
Access to Exception Object's Type Information

X3J16/96-0052, WG21/N0870

Roland Hartinger

Siemens Nixdorf Informationssysteme AG

Munich, Germany

March 6, 1996

1 Problem

If a thrown exception has not been properly caught by an exception hand-

ler in a program, the
ow of control continues either in terminate() or

unexpected() handler. One reasonable way to act in such cases is to issue

a diagnostic message and terminate the program.

Inside those special handlers, there is no portable way to get access to

the exception object or to its type information. The same is valid inside a

catch(...) handler.

However, for diagnostic reasons, it would be of interest to get at least

access to the thrown objects type information. This could improve for ex-

ample, signing o� messages which are issued before terminating the program.

This is what users need to obtain, to report and explain the problem to their

software vendors.

2 Solution 1: using a run-time function

The most obvious solution would be to provide a utility function. The func-

tion prototype could look like this:

const type_info& caught_exception_typeid();

The function returns the type info of the exception object most recently

caught and not �nished. So, the programmer could write:

1

X3J16: 96-0052, WG21/N0870 2

void my_terminate_handler() {

// programs signing off message

cerr << "Termination caused by: " <<

caught_exception_typeid().name() << " exception" << endl;

abort();

}

3 Solution 2: supplied by using typeid() operator

Another way to obtain the exception object's type info is to (re-)use the

typeid operator with a special syntax, namely with an empty argument list,

for example:

void my_unexpected_handler() {

if (typeid() == typeid(A))

throw B; // can rethrow B which can be catched somewhere

else

terminate_program_with_diagnostic_message(typeid().name());

}

4 Implementation aspects

According to theWP, the exception object must remain alive until terminate()

or unexpected() have been �nished. The exception run-time system has still

access to the type information of the most recently caught exception object.

Therefore, it is cheap to deliver the still available type information (the

type-id of the exception that would be thrown by a throw;) to the caller

regardless of using the run-time function or typeid() operator.

Using the typeid() solution is of more elegance than the function solution

and the type information access belongs to it.

5 Recommendation

I recommend to incorporate Solution 2 into the Standard, since it is a very

small change in existing language and WP. Furthermore, I have not found

any existing implementation which currently has typeid() in use. So, there

is no compatibility problem with this extension noticed, as far as I can see.

X3J16: 96-0052, WG21/N0870 3

6 Changes to the Working Paper

5.2 Post�x expression [expr.post].

Change the grammar for:

post�x-expression :

...

typeid (expression)

to

post�x-expression :

...

typeid (expressionopt)

5.2.7 Type identi�cation [expr.typeid].

Add the following paragraph to the end of the section:

If typeid expression is omitted, typeid() will return the type-id of the

most recently caught but not �nished exception (15.5.4). If there is no

such exception, typeid() throws the bad typeid exception (18.5.3).

Add the following footnote to 5.2.7 :

Footnote: This is the typeid of the exception that would (re-)thrown by

throw;.

15.5.4 Type information of not �nished exceptions .

The most recently caught but not �nished exception object's type in-

formation can be obtained inside an active catch(...), terminate()

or unexpected() handler.

In such a context, typeid() returns a reference to a type info object

that represents the type-id of that most recently caught but not �nished

exception object, otherwise typeid() throws the bad typeid exception.

18.5.3 Class bad typeid .

Add to the sentence in paragraph 1 the following:

"... to report a null pointer in a typeid expression or thrownby typeid()

if there is no exception object currently caught and not �nished (5.2.7)."

