Doc No: X3J16/96-0046 W321/ NO864
Dat e: January 30, 1996
Project: Programm ng Language C++
Ref Doc:
Reply to: Josee Lajoie

(j osee@net.ibm com

Access | ssues and Proposed Resol utions

586 - When do access restrictions apply to default argument nanes?

Neal Gafter asked the follow ng:

> class C {

> static int f() { return O; }

> publi c:

> Cint =1()) {1}

> 1

> Cc; // error? C:f accessible?

>

> class D {

> static int i;

> public:

> D int =i) {}

>}

> Dd; // error? D::i accessible?

>

> Does access checking take place when the default argument nane is
> bound (at the point of the function declaration) or when the
> default argunent name is inplicitly used on the call?

Pr oposa

When the default argunent name is bound.

Add to 8.3.6[dcl.fct.default], at the end of paragraph 5:
"Access checking on a nanme used in default argunments takes pl ace
when the nane is bound. [Exanple:
class C {
static int f() { return O; }
public:
} Cint =1()) {}

C’c; /1 well-fornmed
-- end exanpl €]

585 - |Is access checking perfornmed on the qualified-id of a menber
decl arator?

11[cl ass. access] paragraph 6 says:
"It is necessary to nane a class nenber to define it outside of
the definition of its class. For this reason, no access checking
is performed on the conponents of the qualified-id used to nanme the
menber in the declarator of such a definition. [Exanple:

class D {
class E {
static int m
}
b
int D:E:m=1; /1l Ckay, no access error on private ‘FE

-- end exanpl €]

Unfortunately, the paragraph above al so makes the foll owi ng code

wel | - f or med:

class D{ Df(); };
class C

typedef D T;

DC:T::f() {} // Legal? T is a private typedef of C

Pr oposal

Change 11[cl ass. access] paragraph 6 to say:
"It is necessary to nane a class nenber to define it outside of
the definition of its class. For this reason, the qualified-id
used to nanme the menber in the declarator of such a definition can
refer to the nanes of classes encl osing the nenber’s cl ass
definition, even if these classes are private or protected nenbers
of their enclosing class.
[Exanmpl e: /* sane as current exanple in paragraph 6 */]"

388 - Access and qualified ids

11. 3 [cl ass. access. dcl] paragraph 1 says:
"The base class nenber is given, in the derived class, the access
in effect in the derived class declaration at the point of the
access decl aration."

Jerry Schwarz asks:

> It isn't clear what this means for

> class B { public: int i; };

> class D: private B {

> publi c:

> using B::i;

> };

>

> mai n() {

> D p;

> p->i; // clearly well-formed
> p->B::i; // is this well-forned?
> }

Proposa

This should be part of the semantics description for using
decl arati ons.

Move the text above to 7.3.3 Using Declarations, [nanespace.udecl],
at the end of paragraph 3 and add:
“..., even if the menber nanme is qualified by the base class nane.
[Exampl e: /* add Jerry’s exanple above */ 1"

515 - How can friend cl asses use private and protected names?

11.4 [class.friend] paragraph 2 says:
"Declaring a class to be a friend inplies that private and protected
nanes fromthe class granting friendship can be used in the class
receiving it.

[...]

Erwi n Unruh nentioned:

> This is not very explicit.

Where can the private and protected names be used in the befriended
cl ass?

In the base classes of the befriended cl ass?

In the nested classes of the befriended cl ass?

vV V VYV

Pr oposal

The sentence above shoul d be replaced with:

"Declaring a class to be a friend inplies that the names of the
private and protected nenbers of the class granting friendship can
be used in the definition of the class receiving friendship
(excluding in the definition of nested classes of the class
receiving friendship) or, if a static nmenber or a nmenber function
of the class receiving friendship is defined outside of its class
definition, in the definition for this menber, after the menber
decl arator."

and delete the | ast sentence of paragraph 2.

441 - How do access restrictions apply to base class nanmes?

class C {
class A { };
class B: A{ }; /1
b
Is the declaration on line //1 ill-formed because the nested class B

cannot refer to the private type A declared in C?
O is it well-forned because the nane A can be used in the scope C?

Since names used in a class definition after the declarator for the
class is seen (this includes the nanes used in a base-clause) are

| ooked in the scope of the class being defined

(3.4. 1] basi c. | ookup. unequal], paragraph 6), it seens that access
restrictions for the nanes used in a base-clause should al so be
checked as if the nanes were referenced fromwi thin the scope of the
class being defined. This inplies that line //1 above is ill-formed
because a nested class cannot access the nanme of a private nmenber of
an encl osi ng cl ass.

Pr oposal

Add to 10[cl ass. derived] paragraph 2:
“In the definition of a class, access restrictions apply to nanes
used in the base-clause as if these names were used in a nenber
function of that class.”

532 - |Is a conplete class definition allowed in a friend declaration?

Neal Gafter asks:

> Is this allowed:

>

> class A {

> static int x;

> friend class B {

> int f() { return A:x; };
> ;

> 1

>

> If so, what is the scope of the class name B?
Sol ution 1):

It is disall owed.
Thi s makes the nanme | ook up rules for such classes rather sinple
to descri be.

Sol ution 2):

It is allowed. In which case we have to provide a description for how

nane | ook up proceeds in the definition of class B. Possible solution
copy what 11.4 paragraph 5 says for friend functions defined in the
friend declaration.

"A class can be defined in a friend declaration of a class if and
only if the friend class nanme is unqualified. A class defined in
a friend declaration of a class is in the (lexical) scope of the
class granting friendship."

Pr oposal

| prefer solution 1) for sinplicity.
| can live with either.

625 - Can a friend function be declared "inline friend"?

Is the follow ng all owed?
class C {
inline friend void f();

b
void f() { }

VWat is the linkage of such a friend function?

Does "inline friend® nmean the sane thing as "extern inline"?

O does the fact that the function is inline mean that the function
recei ves internal |inkage?

Sol ution 1):
A friend function explicitly declared inline in the friend
declaration is an inline function with external |inkage.

Sol ution 2):
Explicitly declaring a friend function "inline" is ill-formed.
| don’t believe it nakes sense to say that the inline specifier
gives the friend function internal |inkage because it doesn’t nake
sense that the declaration of an entity with internal |inkage be
allowed within a class with external |inkage.

Pr oposal

| prefer solution 1).
| can live with either.

