
Doc Number: X3J16/94-0071
WG21/N0458

Date: March 25, 1994
Project: Programming Language C++
Ref Docs: 94-0027/N0414, 93-0135/N0342
Reply to: Samuel C. Kendall

Sun Microsystems Laboratories, Inc.
Sam.Kendall@East.Sun.COM

Type Combinations, Revision 2
Samuel C. Kendall

1. Introduction

Before we can specify what one can do with C++ types, we should agree on what C++ types exist. A well-understood
example is that function parameters of array or function type are adjusted to pointer type, both in ISO C and in our
WP (working paper), [dcl.fct]. So we don’t have to specify the behavior of functions taking plain arrays as arguments
—there are no such function types.

There is one remaining open issue (that I know of) in this area.

This document is an updated version of 93-0135/N0342. This document reflects the decisions made in San Jose and
San Diego; closed issues have only brief descriptions in the table notes. I have not checked the new WP for compli-
ance with all of the decisions.

This paper attempts to define the status quo. Sections 2 is the only open issue in this paper.

Table 1 shows the possible type combinations and what the rules for each is. There are no open cases left, just a
related issue.

Table Legend

✓ Well-formed; the resulting type is the row, qualified or modified by the column.

✕ Not well-formed.

Table Notes

1 The cv-qualifier percolates down to the first non-array type modifier. San Jose decision. But see section 2 for a
related issue.

2 Only allowed for nonstatic member functions; see section 8.

3 CV-Qualifiers are kept on function return types (and in cast types). San Jose decision.

4 Strip cv-qualifier from the parameter part of the function type; however, the declared parameter retains the cv-
qualifier in its type.

5 Adjusted to pointer to function. Both the parameter and its slot in the enclosing function type have type
“pointer to T”.

6 Pointers to nonstatic member of reference type is not well-formed. San Jose decision.

7 “Pointer to member of class C of typecvvoid ” is not well-formed. San Jose decision.

8 Type “array of T” is adjusted to “pointer to T”. Both the parameter and its slot in the function type have type
“pointer to T”.

Page 2 of 4 X3J16/94-0071 WG21/N0458

9 A parameter of typevoid must be the only parameter and cannot be named. A parameter of type “cvvoid ”
is not well-formed.

10 The redundant cv-qualifier is ill-formed if in the same declaration (eg,const const int), ignored if intro-
duced through the use of typedef or a template type parameter. San Jose decision.

11 CV-Qualified references are ill-formed if written directly; if introduced through the use of a typedef or tem-
plate type parameter, the cv-qualifiers are ignored. San Diego decision.

Discussion

This table is not quite rigorous in the area of cv-qualifiers. Here are several examples. Table note 2 applies to cv-qual-
ified function types, as well as to unqualified function types as the table suggests. The prohibition on reference to
void actually applies to cv-qualifiedvoid as well. Pointer to function type is well-formed, but not pointer to cv-
qualified function type; pointer to member of class C of type cv-qualified functionis well-formed.

2. CV-Qualified Array Type

We decided in San Jose that cv-qualifiers percolate down to the first non-array type. What we formally decided in San
Jose ended there.

But in order to have types likeconst A , where A is an array type, behave sensibly (went the original discussion in

Table 1: Type Combination Rules

Type

CV-Qualifier or Type Modifier

const
vola-
tile

array
[N]

array
[]

func-
tion

return
or cast

func-
tion

param-
eter

pointer
to

refer-
ence to

pointer
to

member

void ✓ ✓ ✕ ✕ ✓ 9 ✓ ✕ ✕ 7

fundamental ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

enum ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

class ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

const 10 ✓ ✓ ✓ ✓ 3 4 ✓ ✓ ✓

volatile ✓ 10 ✓ ✓ ✓ 3 4 ✓ ✓ ✓

const
volatile

10 10 ✓ ✓ ✓ 3 4 ✓ ✓ ✓

array[N] 1 1 ✓ ✓ ✕ 8 ✓ ✓ ✓

array[] 1 1 ✕ ✕ ✕ 8 ✓ ✓ ✓

function 2 2 ✕ ✕ ✕ 5 ✓ ✓ ✓

pointer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

reference 11 11 ✕ ✕ ✓ ✓ ✕ ✕ ✕ 6

pointer to
member

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

X3J16/94-0071 WG21/N0458 Page 3 of 4

the core WG), a type such as “array [5] of const int” must somehow be considered a const type, even though its const
qualifier is hidden below the array type modifier. We decided to do this by defining a “const type” as a type with a
top-level const qualifier or (recursively) as an array of const types.

We did not discuss this issue in detail. Unfortunately it’s more complicated than I thought. I think the issue comes up
rarely in practice, but unfortunately it becomes weird pretty quickly. I will explore some strange consequences of try-
ing to make “array of const” types behave like top-level const types; then I will propose a solution.

Here are some examples:

typedef int A[5];
A x;
template <class T> void f(const T&);

const A& r = x; // #1
f(x); // #2
f(r); // #3

There are two issues, a conversion issue and a template type-matching issue.

We see the conversion issue with #1 and #2: are there conversions

“array of T”--> “array of const T”

This is a possible variants of the trivial conversion

“T” --> “const T”

(though I’m not sure that T --> const T is a trivial conversion anymore according to the new chapter 13).

This new conversion is not the only one needed. We also need the equivalent conversion for pointers to arrays; and
we also need their generalizations to “arrays of arrays of ...”, and the cross-product of those generalizations with the
recently generalized “pointer to pointer to ...” --> “pointer to const pointer to const ...” conversions. “Volatile” must
also go in.

The template type-matching issue comes up with #2 and #3: does “const T” in a template formal parameter match
“array of const” in an actual argument. Currently the answer is no.

I see three courses to take in resolving these issues:

• (1) Put in the conversions I mentioned (so that #1 and #2 are well-formed), and solve the template type matching
issue (so that #3 is well-formed) somehow.

• (2) Come up with another way to formalize the interactions of const and array; for alternative approaches, see the
letter from Steve Adamczyk in revision 1 of this paper.

• (3) Don’t put the conversions in (so that #1 and #2 are ill-formed), and ignore the template type matching issue (so
that #3 is ill-formed).

I propose course (3); it is the simplest. This course restricts what you can do with arrays. But array types are already
second-class in C and C++. Course (3) has the advantage of requiring no change to the WP, as far as I can tell.

Table 2: Types in the Example

Line type being initialized initializer

#1 reference to array[5] of const int lvalue “array[5] of int”

#2 reference to const T lvalue “array[5] of int”

#3 reference to const T lvalue “array[5] of const int”

Page 4 of 4 X3J16/94-0071 WG21/N0458

3. CV-Qualified Function Return and Cast Type (decided)

4. Pointer to Nonstatic Member of Reference Type (decided)

5. Pointer to Nonstatic Member of Void Type (decided)

6. Redundant CV-Qualifiers (decided)

7. Const and Volatile Reference Types (decided)

8. CV-Qualifiers on Function Types

This section proposes no change.

[dcl.fct]/3 defines when cv-qualifiers can go on function types. The last two sentences of that paragraph do not allow
typedef’ing of cv-qualified function types; they are the only types with that restriction. Eg:

typedef void func1_t() const; // ill-formed
struct A {

typedef void func2_t() const; // ill-formed
};

Also, they imply that a cv-qualified function type cannot be created by cv-qualifying a typedef’d function type; eg:

typedef void func_t();
struct B {

const func_t f; // ill-formed
};

In revision 1 of this document I proposed allowing these examples in order to eliminate unnecessary warts in the type
system. Objections from John Armstrong (core-2960) and Steven Adamczyk (convinced me otherwise.

