ANSI Doc No: X3J16/93-0014
ISO Doc No: WG21/N0222
Date: December 10, 1992
Project: Prog. Language C++
Reply To: Dag M. Briick
dag@control.lth.se

Case-study: Casting in C++

1. Introduction

Jerry Schwarz’ paper on ~const [Schwarz, 1993] made me look a little more
carefully at the software system for modelling and simulation of control sys-
tems that we’re developing at my department. Here’s first some figures so you
can estimate the size of our system. I have counted the number of lines with a
; or {, which gives a reasonable approximation of the number of declarations
and statements:

Type of code Count Total
Header files 4 199
Impl. user interface 3 536

Impl. representation kernel 13 314 21 049
InterViews Graphical Ul 19 632
FORTRAN numerical code 3 983
C++ Matrix library 4 204
Other libraries 2202 30021

This survey relates to the 21 049 “lines” of C++ code that we have written
ourselves. Judy Grass at AT&T Bell Laboratories looked at an earlier version
with CIA++, and in her view this code is unusually complex (it broke both
CIA++ and the database interface).

2. Results

I have studied every cast in our code and tried to classify them as static cast,
dynamic cast, re-interpret cast and const cast. The results are:

Type of cast # casts # questionable
Const cast, direct 9 1
application of ~const
Other const cast 21 4
Dynamic cast 212 1
Static cast 24 7
Re-interpret cast 15 0
Cast to same type 2 2
TOTAL 283 15

Questionable casts can be eliminated by trivial modifications of the code,
so we shouldn’t really count them.

3. Discussion

Dynamic cast

We have four separate class hierarchies that use dynamic casts extensively,
much more often than I anticipated. This is of course a reason for concern,
but I haven’t (yet) found any obvious design error in the class hierarchies.

Much of our code is structured as functions that operate on a pair of class
objects, instead of a member function that takes one class object. We think
this is a natural syntax for symmetric operations.

In many of these cases I think we could have re-written the code to use
many more virtual functions, but the drawback would be that all classes except
one in the class hierarchy would have empty realizations. I don’t like that
either. For example, in a class hierarchy for representing expression trees, only
the class for function calls needs a member function GetParameters(). Should
we pollute classes for variables and literals with that function?

Const cast

The number of const casts is surprisingly small. A closer study shows that the
people in my department have listened carefully to my declaration that “casts
are unsafe, don’t use them.” People have written code that obeys the rule of
bitwise constness instead of meaningwise constness. Instead of casting away
const, member functions that are logically const have been declared non-const
because they perform some changes behind the scenes. This effect propagates
all over the system because a const member function cannot call a non-const
member function without casting away const. For the same reason, arguments
that are logically constant have been declared non-const because we call a
non-const member function of the argument.

We have implemented dynamic casting by downcasting functions in the
base class, e.g., Derived* asDerived(). This approach works quite well be-
cause there is reasonable number of classes and we have complete control over
that part of the code. However, we suffer from a major design error on my part:
we haven’t overloaded the downcasting functions on const. For every existing
downcasting function there should also exist const Derived* asDerived()
const. This may be a major reason for the problems we have with missing
constness, but I haven’t had a chance to asess the impact on our code. Auto-
matic overloading on constness may be an advantage of downcasting functions
over dynamic_cast<T> in the RTTI proposal.

The matrix library we use generated a large number (over one hundred) of
warnings because it did not support meaningwise constness; a typical message
was “temporary bound to non-const reference.” A later version, NEWMAT06,
has been cleaned up and all our code now uses it without warnings.

Static cast
All static casts may in a broad sense be regarded as questionable. There are
three main uses of static casts in our application:

e There is an awkward conversion between two similar types String and
Name, which could be avoided with additional overloading.

e We have to shut the compiler up when we delete something through a
reference (delete &r).

o A few static casts are forced on us by mistakes in InterViews. A public
virtual function in a base class is declared as protected in a derived class.

We should probably introduce a few additional static casts for converting
floating point numbers to integers, just to highlight that this is a cast where
information is lost.

Re-interpret cast

All re-interpret casts have a particular use. We call numerical routines in
FORTRAN that take an integer parameter vector; the parameter vector is
passed to our residual routine, written in C++. We use one of the parameters
as a pointer to an integration status object, which of course involves a cast.

4. Conclusions

In any case, I learned three things from this study:
1. Get your facts straight first, argue later.

2. The problem of meaningwise constness is not easily solved. It fundamen-
tally affects the way we program, and it propagates through-out the code.

3. The case for ~const is not as clear-cut as I initially thought. I expected
to be able to remove n const-casts, but instead I would have to make a
bigger redesign to support meaningwise constness uniformly.

I believe in meaningwise constness. Qur software has simply drifted towards
bitwise constness without any real discussion of the design in our group. The
reasons are my overly simplified statement about casts, combined with hard
error messages from the compiler. A clean-up at this stage would be a major
effort, but possibly worth the trouble.

5. References

Scawarz, J. S. (1993): “A minimal ~const proposal.” Technical Report,
Lucid, Inc. Document number X3J16/93-0005 and WG21/N217.

