
X3J16/92-0053 = WG21/N0130, Page #

Doc Number: X3J16/92-0053
WG21/N0130

Date: June 2, 1992
Project: Programming Language C++
Ref Doc: X3J16/92-0023
Reply to: Samuel C. Kendall

CenterLine Software, Inc.
10 Fawcett Street
Cambridge, MA 02138
kendall@centerline.com

Merging Lvalue and Reference; and Canonicalizing Types
Samuel C. Kendall

1. Introduction

This is a proposal to merge the now distinct concepts oflvalue andexpression of reference type.
My purpose is to clarify and simplify the working paper (WP) in an area that is now somewhat
ambiguous. This isnot a proposal for language extensions, though it does result in some minor
changes to the language.

There is also an almost unrelated item,Canonicalizing Types, following the larger proposal.

In merging lvalue and expression of reference type, the language description is simplified as fol-
lows:

• Lvalues as distinct entities are eliminated. “Lvalue” becomes a synonym for “expression of
reference type”. “Rvalue”, if desired, becomes a synonym for “expression of non-reference
type”.

The changes necessary to achieve these simplifications are as follows:

• Bit-field of size N, an attribute which is currently outside the type system, is brought into it.
However, we restrict the use of bit-field types so as not to extend the language (e.g., no pointers
to bit-fields!).

The actual language changes necessitated by these changes are quite minor:

• We restrict the conditional operator in a minor case.

I have not proposed exact changes in wording to the WP to implement this proposal.

This proposal is part of a larger proposal, not yet complete, to describe built-in operators in terms
of conversions and overloading. Thus the proposal you are reading may not provide sufficient
benefits of simplicity to justify itself (although I think that it does). If that turns out to be the case,
please treat it as a meditation on the nature of lvalues and reference types.

I am using Tom Plum’s informal notation for section and paragraph numbers; thus 522 is section

X3J16/92-0053 = WG21/N0130, Page 2

5.2.2, and 12_8p2 is section 12.8 paragraph 2.

2. Lvalues Are References

 In the current WP, the following two entities are very similar:

• lvalue of typeT

• expression of typeT&

This section is a proposal to merge them: to define “lvalue” as shorthand for “expression of refer-
ence type”. If we want “rvalue” in the WP, define it to be “expression of non-reference type”. We
should not say “lvalue of typeT”; instead, say “expression of typeT&”.

 Let us first look at the proposal in detail; then at some seemingly odd consequences of eliminat-
ing lvalue; then at some parts of the WP that are clarified by this change.

2.1 The Proposal in Detail

To review lvalues and references, read 37, 5p7, 822, and 843. For more information, see 522p9,
532p2, 54p14, 5_17p1, and 5_17p7. See also the rules governing the initialization of references to
base classes; they are stated once in terms of references (47) and once in terms of lvalues (843p4).

Reading these, we find that a reference “is-a” lvalue; that is, anywhere an lvalue of typeT
appears, any reference toT can be substituted.

But is the reverse true, that an lvalue “is-a” reference? Can any lvalue of typeT be substituted
anywhere a reference toT can appear? No; there are two exceptions. First, a bit-field lvalue can-
not be converted to a reference; we solve this problem in section <> below. And second, refer-
ences behave differently than lvalues as the second and third operands of the conditional operator.

This second exception we deal with by extending C++ very slightly. Here are the relevant sen-
tences from the WP:

...[I]f both the second and third expressions are references, reference con-
versions are performed to bring them to common type.... The result is an
lvalue if the second and the third operands are of the same type and both
are lvalues. (5_16p3)

This implies the following:

// B is an accessible base class of D
B b;
D d;
cond ? (B&)b : (D&)d; // references: legal, yields a B&
cond ? b : d; // lvalues: illegal

Is this difference important? Considering that

b = d

is legal, it makes sense for

cond ? b : d

X3J16/92-0053 = WG21/N0130, Page #

to be legal also (and to yield an lvalue of typeB). I propose that it be made so.

2.2 Consequences

The consequences of eliminating lvalues in favor of references are described in three parts: first,
in the meanings of identifiers; second, in the conversion rules; and third, in the meanings of oper-
ators that take or yield lvalues.

2.2.1 Meanings of identifiers in expressions

Currently the result of any of these (51; these are some but not all of the primary-expressions):

primary-expression:
:: identifier
:: operator-function-id
:: qualified-id
id-expression

is described basically as having the type it was declared with, and it “is an lvalue if the identifier
is” (51p4). Most identifiers are lvalues, obviously, but I was unable to find where in the WP this is
stated. (Can someone help me out here?) The only non-lvalue identifiers (that are legal expres-
sions) are enumerators (72p1) andthis (51p3, 931p1).

I propose instead that these primary expressions (of the syntaxes listed above) have the following
types:

This last rule may seem a bit strange. For example:

int i;
int& ir;
... i ...; // yields an ‘int&’
... ir ...; // also yields an ‘int&’

Table 1: Types of identifiers in expressions

Primary Expression Type

enumerator “E”, whereE is the enumeration type to which the enu-
merator belongs

this “pointer to possibly qualifiedC”, whereC is the class
type of the member function definition in whichthis
appears, and the qualifiers (if any) are the same as those
of the member function

declared as type
“reference toT”

“reference toT”; in other words, an identifier declared as
a reference type yields that reference type

all other “reference to T”, where T is the type the identifier was
declared as; in other words, an identifier declared as a
non-reference type “T” yields a value of type “T&”

X3J16/92-0053 = WG21/N0130, Page 4

There is a precedent for this rule in Algol-68.

We have avoided dealing with member names in this section. See section <<>> for a treatment of
member names.

2.2.2 Conversion Rules

The conversion rules are simplified in that all rules specifying conversions between lvalues and
references go away (5p7, 522p9, and 54p14).

The trivial conversions (13_2p8) become Table 2:.

Rule a has had constraints and qualifier-stripping added, to avoid the generation of anomalous
expression types: bare (rvalue) function, array, const, or volatile.

• We made the left-hand sides of rules b and c reference types. In the old list they only made
sense for lvalues, although that was not stated.

• We changed T —> T& into rule d. This corresponds to a change already made in the language;
for example:

void f(int&);
void g(const int&);
f(5); // now illegal
g(6); // legal

• For clarity, we added an optional dimension to the array type of rule b.

• We added rules e and f; they were simply missing from the list (although they were mentioned
in 13_2p11).

2.2.3 Operators That Take Or Yield Lvalues

Built-in assignment (5_17p1) is defined to require a modifiable reference instead of a modifiable

Table 2: Revised Trivial Conversions

From To Constraints

a qualifiersopt T& T T cannot be a function type,
array type, or qualified type

b T(&)[dimensionopt] T*

c T(&)(args) T(*)(args)

d T const T&

e T& const T&

f T& volatile T&

g T* const T*

h T* volatile T*

X3J16/92-0053 = WG21/N0130, Page #

lvalue (37) on the lhs.

 The type signatures of unary * and unary & become attractively simple:

unary* : T* —> T&
unary&: T& —> T*

(For unary& we have omitted discussion of the version which yields a pointer-to-member.)

The class member access operators (. and-> , 524) yield results similarly to primary-expressions.
If the member is of type “reference toT”, the operator yields a “reference toT”. If the member is
of type “T”, where “T” is not a reference type, the operator yields a reference to possibly qualified
“T”; const or volatile qualifiers are appropriated from the left-hand operand.

2.3 Minor Clarifications

Certain functions, the result ofe1.member_func or e2->member_func , cannot have their
address taken. Explicit destructors are also in this category. Right now the fact that you can’t take
the address of these functions is a special case.

We can encode this fact by saying that these function expressions yield typeT(args) , whereT
is not a reference type. Every other function expression yields typeT(&)(args) , and so can
have its address taken (explicitly or implicitly).

2.4 The Major Benefit

In the current WP, there are two nearly identical entities, lvalues and expressions of reference
type. In every context we must consider the effect of either of these entities. Cutting the two down
to one simply means that we have less to think about.

Unfortunately, bit-field types rear their ugly head instead. I think that they (unlike lvalues) can be
confined to a few sections of the WP, thus limiting their impact. More detailed analysis is neces-
sary here.

3. Folding Bit-Fields into the Type System

3.1 Current WP

In the current WP, the one important difference between lvalues and references is the status of bit-
field expressions:

struct A { int i:4; } a;
... a.i ...; // a (bit-field) lvalue of type int

Bit-field lvalues such asa.i cannot be made into references (96p3); they are the only such lval-
ues. The intent of this restriction is to prevent bit-fields from bleeding out to the rest of the lan-
guage (we don’t want to allow pointers to bit-fields!).

There is one place where bit-field lvalues do interact strangely with another feature, the condi-
tional operator. Becausea.i in the example above is an lvalue of typeint , the following
expression is legal:

X3J16/92-0053 = WG21/N0130, Page 6

int cond, j, f();
(cond ? a.i : j) = f(); // legal
&(cond ? a.i : j); // unspecified; should be illegal

There are two problems with conditional expressions involving bit-fields. First, generating code
for them is tricky (no C++ compiler I know of implements them). And second, they must them-
selves be considered bit-fields, so that the last line of the above example becomes illegal.

3.2 My Proposal

We create a new kind of derived type (362):

bit-field of lengthN and typeT.

A bit-field of length N and type T is writtenT :N , as though:N were a declarator. There are ref-
erences to bit-fields (in limited contexts), and there are classes, structures and unions containing
bit-fields, but there are no arrays of bit-fields, no functions taking or returning bit-fields, no point-
ers to bit-fields, no constants of bit-field type, and no pointers to class members of bit-field type.

We add a trivial conversion to the list above::

The type on the left is “reference to bit-field of lengthN and type possibly-qualifiedT”. To avoid
changing the language, we disallow the user from writing this type explicitly or forming it using
typedefs. We also modify the constraint of trivial conversion a:

There are no other conversions involving references to bit-fields. In particular, a “reference to bit-
field of typeT” cannot be converted to a “reference toT”.

Declarators (8) for bit-fields can only appear in the declaration of a data member of bit-field type.
No other bit-field declarators are allowed, not even in a typedef. No references to bit-fields can be
declared (although expressions of that type are created by the use of a bit-field data member in an
expression).

The conditional operator (5_16) does not accept references to bit-fields as its second or third oper-
and; any second or third operand of type “reference to bit-field of type possibly-qualifiedT” is
converted toa T (using trivial conversion i). This eliminates a difficult-to-implement feature of
the current language.

Table 3: Addition to Revised Trivial Conversions

From To Constraints

i qualifiersopt T(&):N T T cannot be a qualified type

Table 4: Change in Rule a of Revised Trivial Conversions

From To Constraints

a qualifiersopt T& T T cannot be a function type,
array type, qualified type,or
bit-field type

X3J16/92-0053 = WG21/N0130, Page #

The address-of operator does not accept references to bit-fields. The other operators that accept
references (++, -- , assignment operators, comma operator) accept references to bit-fields. Since
there are no bit-field rvalues, most operators are not affected.

4. Canonicalizing Types.

Rvalues of const and volatile type have no special meaning. Accordingly, we eliminate them with
the following rules for type canonicalization. Tom Plum suggested these in London; see 92-0041
p. 27.

A type declared as “function returning qualifiedT” is adjusted to read
“function returningT”.

A type declared as “function of qualifiedT” (any argument) is adjusted to
read “function ofT” (with the other argument types preserved; how do we
say this?).

For example, a function defined as

void f(const int i) { ... }

has typevoid (int) , although its formal argumenti still has typeconst int .

 Several other rules of this kind are necessary. Here are a few. Note that you must use typedefs to
construct an example for any of these rules.

A type declared as “const reference toT” is adjusted to read “reference to
T”. (Or it could be made illegal.)

A type declared as “volatile reference toT” is not adjusted to read
“reference toT”. (If volatile references are allowed,they have special
semantics. I have not allowed for them in this paper.)

A type declared as “const array ofT” is adjusted to read “array of
const T ”.

A type declared as “volatile array ofT” is adjusted to read “array of
volatile T ”.

A redundant qualifier is eliminated, eg:

typedef const int CI;
const CI ci = 5; // ci is a const int, not

// a const const int.

See also trivial conversion rule a in section 2.2.2 above; it strips qualifiers from a type during
dereferencing.

 The WP probably needs an explicit phase of type canonicalization during the parsing of types.

X3J16/92-0053 = WG21/N0130, Page 8

This phase probably comes just after the interpolation of typedef names; again, see 92-0041 pp.
26-27.

Note that ANSI C needs a type canonicalization phase as well. For ANSI C this phase also
includes a rewrite offloat to double for old-style function definitions.

