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Introduction 
 
Modern electronics have a tall order for their firmware.  Each revision of an embedded system 
often requires additional features, increased complexity, and a shorter development schedule 
than its predecessor.  Beyond that, firmware usually operates under tight timing constraints and 
with limited ROM/RAM space.  By nature, firmware is highly coupled with the hardware it 
drives, particularly the microcontroller. 
 
Assembly programming is the traditional approach for such systems.  Each sequence of 
instructions is handpicked and often results in an efficient use of space and machine cycles.  
Unfortunately, the assembly language has a habit of entangling the complexities of the system 
with its instruction set restrictions and peculiarities; thus extending the amount of time required 
to design and develop the firmware. 
 
The C/C++ language allows complex features to be more clearly and quickly implemented.  Its 
nature actively promotes structured and modular firmware development.  In addition, C/C++ 
abstracts the firmware from its microprocessor, promising portable code (though it is still highly 
coupled to the devices it controls).  Yet, for meeting timing constraints and for economical use of 
ROM and RAM, C/C++ comes up short.  It is no secret that converting from assembly to C/C++ 
will require more ROM/RAM space and that attainable throughput (overall speed) will decrease. 
 
 
Objective 
 
The number and types of trade-offs between assembly and C/C++ are many and vary from one 
environment to another.  The two trade-offs that are of concern in this study are the firmware 
ROM/RAM requirements and attainable throughput.  Ideally, the firmware size and speed gap 
can be effectively bridged through research of C/C++ language constructs.  The assembly output 
of the C/C++ compiler can be used to select language constructs that translate into efficient 
machine code.  Ultimately, the size and speed disadvantage can be minimized. 
 
Two of the biggest factors in determining the efficiency of language constructs are the compiler 
itself and the instruction set of the microprocessor.  The possible combinations of compilers and 
microprocessors are virtually limitless; so the goal is to discover the types of constructs that are 
most likely to produce efficient firmware for any combination.  In other words: portable 
optimizations. 
 
 
Methodology 
 
For this treatment, the Motorola M68HC11, Hitachi H8, Mitsubishi M16C, ARM, and MIPS 
microprocessors were selected for evaluation.  Where possible, the compilers supplied by the 
processor manufacturers were used.  As a general rule, all compiler optimizations were enabled, 
with size as the higher priority.  In most all cases, the test C/C++ inputs are “real-life” code 
samples. 



 
Analysis of the compiler output consists of the following steps: 
 

1. Each instruction is measured for both ROM/RAM space and machine cycle usage. 
2. When the same instructions are executed multiple times (i.e. in a loop), their machine 

cycle usage is accounted on a “per-iteration” basis. 
3. The size and speed measurements for each code sample are converted into a usage 

percentage with 100% being the most and 1% being the least. 
4. With the measurements converted into usage percentages, they can be compared across 

compiler/processor combinations to discover efficiency trends. 
 
It is important to convert the ROM/RAM byte counts and execution cycle counts into a usage 
percentage, so that a single C/C++ construct can be compared across the different 
compiler/processor platforms clearly and fairly.  In other words, efficiency comparisons are in 
terms of twice as fast and half the size instead of 53 cycles on one platform and 34 bytes on 
another.  Again, the goal is to discover techniques that are efficient on most platforms. 
 
 
Command Processing 
 
Firmware systems are often a component of a larger system.  Implementing the interface 
protocol between components can easily fall onto the firmware’s shoulders.  The interface or 
communications protocol can range from simple to complex; to name a few: SCSI, ATA/ATAPI, 
PCI, FireWire, and USB. 
 
Commands and messages are usually represented as enumerated values.  Those values can be 
dense: a hundred commands spread across a hundred values (a 1:1 ratio), or sparse: say a 
hundred commands spread across four hundred values (a 1:4 ratio).  For this study, both dense (a 
ratio better than 1:4) and sparse (a ratio of 1:4 or worse) placements of values are treated. 
 
Fortunately, the C/C++ language directly supports two constructs useful to command processing: 
the if-elseif-else and switch-case keywords.  In addition, a type of jump-table can be built using 
an array of function addresses indexed to the values of the commands they process.  As usual, 
there are trade-offs between these types of command processing. 
 
If-elseif-else, Switch-case, and Jump-table Constructs 
 
The basic if-elseif-else sequence compares the command value with all supported values.  This 
seems simple and straightforward enough, but as the firmware rolls through revisions and 
additional features, simple command value compares (i.e. if (command == 0x53), etc.) can too 
easily have obscure conditions introduced (i.e. if (command == 0x53 && (global & 0x10)), etc.).  
That should raise a few red flags – maintenance madness.  An if-elseif-else sequence, freed from 
its obscure conditions, was used for both the dense and sparse command processing analysis 
(Listing 1). 
 



There are not many permutations of the switch-case construct, although a missing break 
statement can still cause trouble.  Usually, the order of the cases does not affect the generated 
assembly, as it does with if-elseif-else sequences.  It is very possible that the switch-case 
construct is the simplest to create and maintain (Listing 2). 
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if (index == 62) 
{ 
  result = Case62(param); 
} 
. 
. 
. 
else if (index == 95) 
{ 
  result = Case95(param); 
} 
. 
. 
. 
else if (index == 35) 
{ 
  result = Case35(param); 
} 
. 
. 
. 
else 
{ 
  result = -1; 

}

Listing 1  If-elseif-else Code Sample 

inally, the jump-table method of command processing: it pro
echniques developed in the assembly realm.  In C/C++, the c
f function addresses indexed by their corresponding comman
ot have a corresponding command is filled with the address o
alue (Listing 3).  Though the initial creation of a jump-table 
nd removing commands at their exact index locations, can be
switch (index) 
{ 
  case 62: 
  result = Case62(param);
  break; 
  . 
  . 
  . 
  case 95: 
  result = Case95(param);
  break; 
  . 
  . 
  . 
  case 35: 
  result = Case35(param);
  break; 
  . 
  . 
  . 
  default: 
  result = -1; 
  break; 
 

}

Listing 2  Switch-case Code Sample 
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typedef int (* jumpfnct)(void * param); 
 
static int CaseError(void * param) 
{ 
 
  return -1; 
} 
 
static jumpfnct const jumptable[] = 
{ 
  CaseError, CaseError, ... 
  . 
  . 
  . 
  Case44,    CaseError, ... 
  . 
  . 
  . 
  CaseError, Case255 
}; 
 
  result = index <= 0xFF ? jumptable[index](param) : -1; 

Listing 3  Jump-table Code Sample 

Analysis 
 
As no surprise, the if-elseif-else sequence tends to be both larger and slower than its counterparts.  
Converting the code sample to fit a switch-case construct improves the size, if the values are 
dense, and increases the speed of the resultant assembly output.  Finally, the code space required 
by jump-tables can range from nearly the biggest to the very smallest, depending on the density 
of the index values.  It is also interesting to note that jump-tables have the fastest execution time 
(Chart 1). 
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Chart 1  Command Processing Efficiency Results 

All the compilers generated similar assembly code for both the sparse and dense if-elseif-else 
code samples.  Usually a couple of instructions are needed to do the comparison (i.e. else if(value 
== 95), etc.) and an additional two to five instructions for the conditional block.  Because both 
the comparison block and the conditional block have to be duplicated for each possible command 
value, the if-elseif-else sequence is lengthy.  Worse, values that have placement near the first of 
the sequence will be executed within a short time frame, while values have placement near the 
end will not be executed until all the preceding conditions are checked and found to be false.  
That is a crippling feature, especially when dealing with real-time and quick-response systems.  
The HC11 assembly output demonstrates those characteristics (Listing 4).  It is interesting to 
note that the HC11 output is the only one that used a stack. 
 
The switch-case sample is unique from the other samples due to the range of assembly output.  
To their credit, all compilers generated a jump-table for the dense-value sample.  For the sparse-
value sample, the H8 compiler produces a simple if-elseif-else sequence (more efficient than its 
C-to-assembly if-elseif-else translation).  The HC11 compiler uses a look-up table and 
sequentially scanning code for its translation.  The MIPS compiler converted both the sparse 
samples into a jump-table.  Finally the ARM and M16C both generate a type of binary-
search/else-if code sequence for sparse switch-case constructs.  This is the most intriguing output 
because it is both smaller than a table-based method and faster than an if-elseif-else sequence.  
The ARM is the better example of the binary-search/else-if code (Listing 5).  The basic idea is 
that the first comparison is with a median value.  If result of the comparison is “equal”, then the 
flow branches to its conditional block.  Should the result be “greater than”, the flow branches to 
the median value comparison of the upper half of the switch-case values.  Otherwise (the result is 



“less than”), the flow simply falls into the next comparison, which is the median value of the 
lower half of the switch-case.  Eventually, a “leaf” comparison can be reached, where if the 
comparison fails, then the flow branches to the default case. 

TSX           ; comparison 
LDD  2,X      ; block. 
CPD  #002C 
BNE  NextCmp 
LDD  6,X      ; conditional 
BSR  Case44   ; block. 
TSX 
STD  0,X 
BRA  Epilog 
. 
. 
. 
LDD  #FFFF    ; final “else” 
TSX           ; block. 
STD  0,X 
 
Epilog: 

CMP  R0,#0x3E  ; median val. 
BEQ  Case62 
BGT  Median 
. 
. 
. 
CMP  R0,#0x1A  ; leaf val. 
BEQ  Case26 
B    Default 
. 
. 
. 
CMP  R0,#0x5F  ; last val. 
BEQ  Case95 
 
Default 
MVN  R0,#0 

Listing 4  If-elseif-else Assembly (HC11) Listing 5  Switch-case Assembly (ARM) 

 
Although the corresponding C/C++ code does not suggest it, the assembly output for the jump-
table sample (both sparse and dense values) is the simplest.  All compilers have a one-to-one 
correlation of their output with the C/C++ input (what you design is what you get).  All assembly 
listings first perform a range comparison, calculate the address, and then jump to it.  That can be 
especially reassuring to all the assembly-turned-C developers.  The M16C displays this 
correlation just as clearly as the other platforms (Listing 6).  Though the size of the jump-table 
changes as entries are added and removed from it, the actual time to execute the calculate-and-
jump does not.  That is a definite boon for real-time systems everywhere.  It is also important to 
note that, even though the jump-table is defined as an array (in C/C++), because it is declared as 
“const”, it can be placed in system ROM. 
 



MOV.W   R0,A0              ; range test. 
MOV.W   5[FB],R0 
CMP.B   #255,A0 
JGT     Default 
SHL.W   #2,A0              ; calculate 
JSRI.A  jumptable:20,[A0]  ; and jump. 
JMP.S   Epilog 
 
Default: 
MOV.W   #-1,R0 

Listing 6  Jump-table Assembly (M16C) 

Summary 
 
In short, if-elseif-else constructs are not well suited for processing commands, especially not 
when there are many layers of processing in each command.  In contrast, the switch-case is 
suitable for this type of work, particularly where the command values are densely packed 
together.  Where speed is a concern (usually important to real-time systems), or ensuring that the 
execution time will not vary from one command to the next, nothing beats a jump-table, whether 
the commands are dense or sparse.  If a jump-table is populated with dense values, it is the 
fastest and the smallest possible construct. 
 
 
Iterative Processing 
 
Quite often, firmware is found providing intermediate processing for the data that passes through 
it.  The amount of time required to perform this data processing is most critical when there is a 
large quantity of data.  Such large quantities of data are usually organized into arrays and 
iteratively processed, that is, in a loop construct. 
 
When iteratively accessing large arrays (500 or more data items), a small change of instructions 
or their sequence can produce huge execution-time savings.  This type of code tuning is 
commonly known as “loop optimization”.  There are time-proven loop improvements such as: 
unswitching, jamming, unrolling, etc. that deserve mention, but are not treated in full here.  In 
this study, lesser-known enhancements are given treatment, particularly: array access by index, 
array access by pointer, and loop counting down. 
 
Unswitching 
 
A loop that “switches” re-evaluates a fixed condition on iteration, for example, whether to load 
data from either a default or custom table (Listing 7).  The term “unswitching” refers to the 
removal of the condition evaluation from inside the loop, placing it outside of the loop, and 
duplicating the loop within both of the condition cases (Listing 8).  Though the loop is now 
duplicated, each copy is simpler than the first and therefore more efficient.  The only drawback is 
that now both loops need to be maintained in parallel – more than just an annoyance, a 
maintenance headache. 



for (i = 0; i < count; ++i) 
{ 
  if (type == TYPEA) 
  { 
    sum += a[i]; 
  } 
  else 
  { 
    sum += b[i]; 
  } 
} 

if (type == TYPEA) 
{ 
  for (i = 0; i < count; ++i) 
  { 
    sum += a[i]; 
  } 
} 
 
else 
{ 
  for (i = 0; i < count; ++i) 
  { 
    sum += b[i]; 
  } 
} 

Listing 8  "Switched" Loop Listing 7  "Unswitched" Loops 

 
Jamming 
 
Jamming (a.k.a. fusion) is the combination of two or more similar loops into one.  To be 
beneficial, though, there needs to be some degree of correlation between the data of the jammed 
loops (Listing 9).  If there is enough correlation between the two data sets, the greatest benefit is 
to combine them into a data structure and then loop through an array of data structures (Listing 
10).  The benefit is that only one array or pointer needs to be held in a register, as opposed to two 
or more registers consumed by array addresses or pointers (which often leads to pushing and 
popping array addresses onto and off of the stack). 

for (i = 0; i < count; ++i) 
{ 
  type[i] = 0x10; 
} 
 
for (i = 0; i < count; ++i) 
{ 
  size[i] = 0; 
} 

struct 
{ 
  int type; 
  int size; 
  . 
  . 
  . 
} group; 
 
for (i = 0; i < count; ++i) 
{ 
  group[i].type = 0x10; 
  group[i].size = 0; 
} 

Listing  10  "Unjammed" Loops Listing 9 "Jammed" Loop 

 
Unrolling 
 



Frequently, data that needs to be processed in a loop is aligned to a known byte boundary (i.e. 
one video (QCIF) scan line – 264 bytes, an eight-byte alignment, etc.).  If the data would be 
correctly processed one byte at a time (Listing 11), then the loop can be “unrolled” to its byte-
boundary and be processed more efficiently (Listing 12).  The main advantage is that the number 
of iterations of the loop decreases, which, in effect, translates to more time to process data and 
less time lost to overhead. 

for (i = 0; i < count; ++i) 
{ 
  a[i] <<= 2; 
} 

for (i = 0; i < count; i += 2) 
{ 
  a[i + 0] <<= 2; 
  a[i + 1] <<= 2; 
} 

Listing 12  "Rolled" Loop Listing 11  "Unrolled" Loop 

 
Accesses by Index, Accesses by Pointer, and Counting Down 
 
The most commonly seen use of arrays and loops has an index count up to a value as the control 
of the loop.  That same index is then used to access data in one or more arrays (Listing 13).  
Occasionally, and usually for purposes other than looping through an array of data, a pointer is 
substituted for an array.  For this treatment of pointer accesses, all the arrays are accessed via 
pointers (Listing 14).  Finally, when pointers are used in place of arrays, it is a simple change to 
loop up through the data but count down for loop control (Listing 15).  All these are subtle, 
inconspicuous differences that probably go unnoticed, but consistently improve performance. 
 



for (index = 0; index < count; ++index) 
{ 
  sum[index] = left[index] + right[index]; 
} 

Listing 15  Index Access to an Array 

for (index = 0; index < count; ++index) 
{ 
  *sum = *left + *right; 
  ++right; 
  ++left; 
  ++sum; 
} 

Listing 14  Pointer Access to an Array 

for (; count > 0; --count) 
{ 
  *sum = *left + *right; 
  ++right; 
  ++left; 
  ++sum; 
} 

Listing 13  Loop Control by Counting Down 

Analysis 
 
Pointers prove themselves to be more efficient than arrays, except in the case of the ARM 
processor – which is addressed later.  Also, the counting down loop control is shown to be more 
efficient (Chart 2).  The following analysis dissects the compiler assembly output and explains 
these results. 
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Chart 2  Iterative Processing Efficiency Results 

All compiler/processor platforms, except for the ARM processor, produced similar assembly 
code for the array/index access type loop (Listing 16).  The loop control index is converted into 
an array offset and then added to the array address, for each of the arrays accessed in the loop.  
Fortunately in this case the size of the array elements is a power of two and the index-to-offset 
conversion is simple.  Excessive overhead will result when an element size, such as 33 bytes, is 
used.  Such conversions (i.e. an index of 5 converted into an offset of 165) are execution-time 
costly because they often require a multiplication.  Finally, the index is incremented and 
compared against the preset loop control count.  It is interesting to note that the stack is used to 
temporarily store the address of the sum array. 
 
Pointer access of arrays eliminates the index-to-offset conversion penalty by simply 
incrementing the pointers after accessing its data (Listing 17).  In the case of an element size like 
33 bytes, the pointer is simply incremented by 33 bytes, the same size and speed cost as an 
element size of a power of two.  Even though the math involved in the accesses has been 
simplified by using pointers, still the stack is used – this time to temporarily store the value of 
the count variable. 
 



SUB.W   R6,R6 
 
LoopTop: 
MOV.W   R6,R5    ; convert the 
ADD.W   R5,R5    ; index. 
MOV.W   @(SP),R0 ; calculate 
ADD.W   R5,R0    ; the address. 
. 
.                ; repeat. 
. 
 
MOV.W   @R1,R1   ; load the 
MOV.W   @R2,R2   ; array values. 
ADD.W   R2,R1 
MOV.W   R1,@R0   ; store the sum. 
 
ADDS.W  #1,R6    ; increment the 
CMP.W   R4,R6    ; index and loop 
BCS     LoopTop 

SUB.W   R6,R6 
 
LoopTop: 
MOV.W   @R3,R0   ; load the 
MOV.W   @R5,R1   ; array values. 
ADD.W   R1,R0 
MOV.W   R0,@R4   ; store the sum. 
 
ADDS.W  #2,R5    ; increment the 
ADDS.W  #2,R3    ; pointers 
ADDS.W  #2,R4 
 
ADDS.W  #1,R6    ; increment the 
MOV.W   @(SP),R0 ; index and loop 
CMP.W   R0,R6 
BCS     LoopTop 

Listing 17  Index Access to an Array (H8) Listing 16  Pointer Access to an Array (H8) 

By switching to a count-down loop control, there are enough available registers to avoid using 
the stack (Listing 18).  There is a direct correlation between the C/C++ sample code and the 
generated assembly.  One less C/C++ variable means one less machine register is consumed.  
Proof that even with all optimizations turned on, the C/C++ source feed into the compiler 
directly influences the efficiency of the assembly output. 

LoopTop: 
MOV.W   @R4,R0   ; load the 
MOV.W   @R3,R1   ; array values. 
ADD.W   R1,R0 
MOV.W   R0,@R5   ; store the sum. 
 
ADDS.W  #2,R3    ; increment the 
ADDS.W  #2,R4    ; pointers. 
ADDS.W  #2,R5 
 
SUBS.W  #1,R6    ; decrement the 
CMP.W   R6,R6    ; count and loop 
BCS     LoopTop 

Listing 18  Loop by Counting Down (H8) 

 
The ARM Exception 
 
Accesses by index have a major disadvantage, the costly index-to-offset conversion.  Pointer 
accesses also have a disadvantage (though not as potent as index accesses): their need to be 
incremented.  The ARM instruction set provides an improvement for some index accesses and all 
pointer accesses (Figure 1).  As long as the size of an array’s data elements is a power of two, the 



ARM load instruction can perform the index-to-offset conversion, combine it with the base 
address and load the data element.  Again, should the element size be 11 or something like it, a 
costly multiplication will be required.  The load instruction can improve a pointer’s performance 
too by loading the pointer’s data and incrementing the pointer by the size of the data, whether it 
is a power of two or not.  Fortunately enough, the store instruction has this same capability. 
 

LDR  R12,[R1],#+4 

pointer post-
increment

LDR  R12,[R1,R4,LSL#2]

array 
base 

offset 
calculation

Figure 1  The ARM Load Instruction 

Summary 
 
Though modern microprocessor architectures are more array-friendly, the high cost of an index-
to-offset conversion is unavoidable when the data element size is not a power of two.  Therefore, 
pointer access still cannot be beat when iteratively processing an array.  Also, there is no 
compelling reason to use the traditional “increment the index up to the count value”.  The count 
variable itself can be used to control the iteration of the loop – without the extra cost of another 
register. 
 
 
Device Input/Output 
 
One of the benefits of C/C++ is a layer of abstraction from the microprocessor.  Theoretically, 
firmware can be recompiled for any microprocessor without changing a single line of source 
code.  The peculiarities and burden of stack implementation, procedure calls, instruction set 
restrictions, and etc. (even the machine word size is an abstraction) are conveniently removed 
from the engineer’s shoulders and tended to by the compiler.  Also in that list of abstractions is 
device access.  In fact, if devices are not mapped into memory space, standard ANSI C/C++ 
provides no means for reading or writing.  For memory-mapped devices, access can be gained 
through one of two methods: bit-field structures and bit-masking techniques. 
 
Bit-masking and Bit-fields 
 
C/C++ allows any location in the memory address space to be accessed through pointers.  All 
that is required is that the pointer be given the address of the location of the device and it can be 
read from and written as though it were any other data object (Listing 19).  Among other things, 
the keyword volatile ensures that each C/C++ access directly corresponds to an access in 
assembly.  Devices can be read, bit-masked with a desired value, and written back – much like 
assembly programming. 
 



Use of a pointer to access devices incurs two types of overhead that can be seen from the C/C++ 
source code.  First a pointer requires storage space to hold the address of the device.  Second, 
before accessing the device, the pointer must be dereferenced and then reads and writes can be 
performed.  Both of these penalties can be avoided by using a macro that contains the device 
address (Listing 20).  Such a macro more closely shadows the assembly load/store sequence. 

int volatile * const device = DEVICE_ADDRESS; 
. 
. 
. 
*device = (*device & ~0x8 & ~0x70) | 0x1 | 0x6 | 0x80; 

Listing 20  Device I/O by Pointer 

#define device (*(int volatile * const)DEVICE_ADDRESS) 
. 
. 
. 
device = (device & ~0x8 & ~0x70) | 0x1 | 0x6 | 0x80; 

Listing 19  Device I/O by Macro 

 
Finally, the C/C++ bit-field construct allows any bit or group of bits anywhere to be individually 
read or written - or so it seems (Listing 21).  Bit-fields are fraught with hidden costs, which will 
be discovered when the assembly output is examined. 

struct BitfieldStruct 
{ 
  unsigned bit0   : 1; 
  unsigned bits12 : 2; 
  unsigned bit3   : 1; 
  unsigned bits46 : 3; 
  unsigned bit7   : 1; 
}; 
. 
. 
. 
device.bit3   = 0; 
device.bits46 = 0; 
device.bit0   = 1; 
device.bits12 = 3; 
device.bit7   = 1;  

 

 
Analysis 
 

Listing 21  Device I/O by Bit-field
Structure



The efficiency comparison results confirm the efficiency of macros over pointers and also 
confirm that bit-field structures have hidden costs for they are the largest and slowest of the 
bunch (Chart 3). 
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Chart 3  Device Input/Output Efficiency Results 

As predicted, the pointer requires space for storing the address of the device.  Again, it requires 
an instruction to load the device address from the pointer and then can read and write the device 
at will.  Besides that, the assembly code generated by the compilers looks very much like code 
that would be expected of an assembly programmer (Listing 22). 
 
If the pointer method has the appearance of being handmade by an assembly programmer, the 
macro method is exactly what should be expected.  By using a macro in the C/C++ source code, 
the device address was basiclly placed “inline” the instruction stream.  This output definitely 
demonstrates the efficiency that can be expected from a modern compiler (Listing 23). 
 



MOV.W  #65415,R0 ; read the dev. 
AND.W  65280,R0 
OR.W   #135,R0 
MOV.W  R0,65280  ; write the dev. 
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ADR  R0,device   ; load the ptr. 
LDR  R0,[R0,#0]  ; load its val. 
LDR  R1,[R0,#0]  ; read the dev. 
BIC  R1,R1,#0x78 
ORR  R1,R1,#0x87 
STR  R1,[R0,#0]  ; write the dev. 
Listing 23  Device I/O by Pointer (ARM) Listing 22  Device I/O by Macro (M16C) 

he assembly generated for the bit-field structure is undoubtedly the largest and slowest.  These 
re the types of constructs that make C/C++ infamous for code-bloat.  It is twice as large and 
ore than twice as slow as its peers.  From inspection of the generated assembly, it is clear that 

he C/C++ compiler generates a load/modify/store sequence for every access of a bit group in the 
tructure (Listing 24).  It would be hard to be more inefficient. 

BCLR.B  #4,@65280:8  ; clear a single bit. 
 
MOV.B   @65280:8,R0L ; clear/set a bit group. 
AND.B   #-15:8,R0L 
MOV.B   R0L,@65280:8 
. 
.                    ; repeat for other bits. 
. 
 
BSET.B  #0,@65280:8  ; set a single bit. 

Listing 24  Device I/O by Bit-field (H8) 

ummary 

ointers require extra storage space and bit-fields are simply too inefficient to even be 
onsidered.  Macros are definitely the method of choice.  The assembly generated for it is exactly 
hat should is to be expected, concise and fast.  The corresponding C/C++ macro definition can 
e confusing.  But if all devices are accessed in that manner, then a standard macro format can 
liminate the potential for mishap. 

tructure Inheritance 
ust as most new firmware was once done in assembly and is now done in C, it appears that C++ 
s being poised to follow suit.  An embedded C++ standard is emerging to fit C++ to the 
mbedded/firmware world.  Therefore, now is the time to investigate C++ and discover its 
trengths and weaknesses. 

nheritance is a C++ construct that is not truly available in C; therefore it should be investigated 
nd compared with nearest match in the C language.  Conveniently, the C++ standard treats 



structures as a type of an object class in which the default scope of its members is public.  
Therefore, while focusing on inheritance, this study uses structure constructs to generate the 
assembly listings.  What is discovered for structure inheritance will be the same for class 
inheritance. 
 
Inheritance: C Style, C++ Style, and Virtual 
 
When, in C, the combination of two of more data is logical, a structure is formed.  Should one or 
more the data that will be included into the structure is itself a structure, there is only one-way to 
include it: make it a member of a new data structure (Listing 25 and Figure 2).  The data in the 
structure is organized in memory in the same order that it is listed in the C source code.  Sounds 
simple enough, and it is. 

struct BlockStruct 
{ 
  int left; 
  int right; 
  int top; 
  int bottom; 
}; 
 
struct ColorStruct 
{ 
  unsigned char hue; 
  unsigned char saturation; 
  unsigned char luminance; 
}; 
 
struct ListStruct 
{ 
  struct ListStruct * next; 
  struct BlockStruct  block; 
  struct ColorStruct  color; 
  int                 zorder; 
}; 

BlockStruct 
left 
right 
top 
bottom 

ColorStruct 
hue 
saturation 
luminance 

next 

zorder 

ListStruct 

Listing 25  Inheritance: C Style 

 
If it is logical to combine two or more data together and it makes sense t
of that data as base type – derived type relationship, then C++ style inhe
proper answer (Listing 26 and Figure 3).  Inheritance allows a new type 
exclusion: some of the inherited data, that should not be used be the deri
hidden away from it via the private keyword.  Now the prickly-part: the 
determine the organization of the inherited data.  Another layer of abstra
getting too thick. 
 

Figure 2  Inheritance: C 
Style 
o view the combination 
ritance seems to be the 
of inclusion or 
ved structure, can be 
programmer cannot 
ction – it just might be 



struct BlockStruct 
{ 
  int left; 
  int right; 
  int top; 
  int bottom; 
}; 
 
struct ColorStruct 
{ 
  unsigned char hue; 
  unsigned char saturation; 
  unsigned char luminance; 
}; 
 
struct ListStruct : 
BlockStruct, ColorStruct 
{ 
  ListStruct * next; 
  int          zorder; 
}; 

BlockStruct 
left 
right 
top 
bottom 

ColorStruct 
hue 
saturation 
luminance 

next 
zorder 

ListStruct 

Figure 3  Inheritance: C++ 
Style 

Listing 26  Inheritance: C++ Style 

Virtual inheritance is pretty much like black magic.  When two classes are derived (by normal 
methods) from the same base class and are inherited by a third class, two copies of the original 
base class will exist.  If those same two classes are “virtually” derived from the same base class, 
then when inherited by the third class, only one copy of the original base class will exist (Listing 
27 and Figure 4).  The trick to virtual inheritance is that a no classes actually contain the virtual 
base class, but instead hold a pointer to a virtual base class table that indicates where in the 
object the virtual base class exists.  This is important because multiple classes can inherit those 
same derived classes and therefore the location of the virtual base class will change from class to 
class.  Complicated?  Yes, it is. 
 



struct BlockStruct 
{ 
  int left; 
  int right; 
  int top; 
  int bottom; 
}; 
 
struct ColorStruct : 
virtual BlockStruct 
{ 
  unsigned char hue; 
  unsigned char saturation; 
  unsigned char luminance; 
}; 
 
struct ListStruct : 
virtual BlockStruct 
{ 
  ListStruct * next; 
}; 
 
struct ColorListStruct : 
ColorStruct, ListStruct 
{ 
  int zorder; 
}; 

ListStruct 

BlockStruct
left 
right 
top 
bottom 

ColorStruct
vbase 
hue 
saturation 
luminance 

zorder

ListStruct 
vbase 
next

 . 
 . 
BlockStruct 
 . 
 . 
BlockStruct 

ListStruct 
Base Table

Figure 4  Inheritance: Virtual 

Listing 27  Inheritance: Virtual 

The complications add upon themselves as the levels of virtual base class inheritance increases.  
Each level of virtual inheritance requires its own virtual base class table.  To traverse an object 
into its deepest virtual base class – say there are two levels of virtual inheritance, two separate 
virtual base class table lookups are required (Listing 28 and Figure 5).  Code-bloat?  Slow?  Yes 
and yes. 
 



struct BaseStruct1 
{ 
  . 
  . 
}; 
 
struct BaseStruct2 : 
virtual BaseStruct1 
{ 
  . 
  . 
}; 
 
struct BaseStruct3 : 
virtual BaseStruct2 
{ 
  . 
  . 
}; 
 
struct DerivedStruct : 
public BaseStruct3 
{ 
  . 
  . 
}; 

Listing 28  Multiple Virtual 
Inheritance 

Figure 5  Multiple Virtual Inheritance 

 . 
 . 
BaseStruct

BaseStruct3
Base Table

member data 

BaseStruct2
vbase 
. 
. 

BaseStruct1

 . 
 . 
BaseStruct

BaseStruct2
Base Table

. 

. 

vbase 
. 
. 

BaseStruct3

DerivedStruct 

Analysis 
 
As can be predicted from the corresponding C/C++ source code, C structures and simple C++ 
inheritance are nearly identical in the terms of size and speed.  And as has been discussed, virtual 
inheritance is the most inefficient form of inheritance (Chart 4). 
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Chart 4  Structure Inheritance Efficiency Results 

Both the C style inheritance (by membership) and the simple C++ inheritance are straightforward 
enough to allow for highly efficient access of their member data, no matter how deeply buried it 
may be (Listings 28 and 30).  Concerns of efficiency cannot dictate the choice of one over the 
other; instead terms of readability and maintainability enter in at this point. 

MOV.W  @(4:16,R0),R0  ; fixed-offset 
                      ; member access.

Listing 30  Inheritance: C Style (H8) 

LDR  R0,[R0,#4]  ; fixed-offset 
                 ; member access.

Listing 29  Inheritance: C++ Style (ARM) 

 
Virtual inheritance is a beast when it comes to efficiency.  Slower execution time and more 
ROM space is consumed by data accesses; and the deeper the data’s buried, the harder it is to get 
to it.  If the data is only buried one level deep, then the pointer to the virtual table is loaded, the 
entry for the desired virtual class is accessed, and the address of the base class is computed.  
After all of that is done, then the data that was originally desired can be accessed (Listing 31).  
Definitely not a pretty sight – firmware will do well to avoid virtual inheritance. 
 



LW    $9,0($4)   ; vbase pointer. 
LW    $10,4($9)  ; base class offset. 
ADDU  $11,$4,$10 ; calc. class pointer 
LW    $12,0($11) ; load desired data. 

Listing 31  Inheritance: Virtual (MIPS) 

Summary 
 
The choice between C style inheritance (by membership) and simple C++ inheritance is not one 
of efficiency – the same type of assembly is produced for both.  Other factors, such as the benefit 
of private, protected, and public data scope, must govern that decision.  Virtual inheritance incurs 
too much overhead and is not suitable for current firmware systems.  If C++ is not used 
anywhere in a project, then the possibility of a virtual base class “sneaking” into the code base is 
eliminated. 
 
 
Object Constructs 
 
Another C++ concept is the organization of data and functions into objects.  By and large, 
object-oriented design and development of software is the buzzword of the day.  Although the 
“data plus functions” or “properties and methods” concept can be expressed in C as data 
structures and its related functions, it is undoubtable that firmware will eventually employ the 
C++ style of objects. 
 
Objects: C Style, C++ Style, and Virtual 
 
As mentioned above, grouping a data structure with the functions that access, control, and 
modify it is a simple type of object-oriented design and can be done in C (Listing 32 and Figure 
6).  How the full-blown C++ language compares with this simple type of object-oriented 
programming is what should be determined. 
 



struct DataStruct 
{ 
  struct DataStruct * parent; 
  struct DataStruct * leftchild; 
  struct DataStruct * rightchild; 
}; 
 
struct DataStruct * 
DataChildLeftmost(struct DataStruct * node); 
 
unsigned int 
DataParentCount(struct DataStruct * node);

parent 
leftchild 
rightchild 

DataClass 

Figure 6  Objects: C Style 

Listing 32  Objects: C Style 

A very common C++ object style is to make the member functions public and the data private 
(Listing 33 and Figure 7).  It is important to note that most class functions have one hidden 
parameter, the this pointer.  The this pointer contains the address of the object that the function is 
to modify.  Whenever member data is accessed, it is done so by dereferencing the this pointer 
(i.e. this->data).  This simple C++ class is hardly different from the C structure and the two 
should produce similar assembly listings. 

class DataClass 
{ 
 
  public: 
  DataClass *  ChildLeftmost(void); 
  unsigned int ParentCount(void); 
 
  private: 
  DataClass * parent; 
  DataClass * leftchild; 
  DataClass * rightchild; 
 
}; 

parent 
leftchild 
rightchild 

DataClass 

Figure 7  Objects: C++ 
Style 

Listing 33  Objects: C++ Style 

 
Another common object-oriented feature is the virtual function.  Rare is the C++ object that does 
not contain at least one virtual function (Listing 34 and Figure 8).  As with virtual inheritance, 
there are hidden virtual function tables (a.k.a. hidden costs) that make virtual functions possible. 
 



class DataClass 
{ 
 
  public: 
  virtual DataClass *  ChildLeftmost(void); 
  virtual unsigned int ParentCount(void); 
 
  private: 
  DataClass * parent; 
  DataClass * leftchild; 
  DataClass * rightchild; 
 
}; 

vfnct 
parent 
leftchild 
rightchild 

ChildLeftmost 
ParentCount 

DataClass 
Function Table 

DataClass 

Listing 34  Objects: Virtual Functions 

Figure 8  Objects: Virtual 
Functions 

Can virtual functions be as complicated as virtual tables?  Yes.  Multiple inheritance requires 
multiple virtual function tables (Listing 35 and Figure 9).  The reason is that an outside caller 
may only have a pointer to one of the base objects and not even know what type of class the 
derived object actually is.  So there must be a virtual function table with the scope of the base 
class so that the proper virtual function can be executed. 
 
Most member functions require that the this pointer be passed in to them as a hidden parameter.  
If a virtual function, which expects a pointer to the derived object, is called from a base class 
pointer, that pointer must be adjusted to point to the derived class.  Conversely, if a virtual 
function, which expects a pointer to the base class, is called from a derived class pointer, that 
pointer must be adjusted to point to the base class.  This conversion is usually referred to as a 
logical this adjustment or is performed by an adjuster thunk/veneer depending on the particular 
implementation.  Such adjustments are only required for virtual functions and multiple 
inheritance. 
 



class BaseClass1 
{ 
  virtual VFnct1(); 
  . 
  . 
}; 
 
class BaseClass2 
{ 
  . 
  . 
}; 
 
class DerivedClass : 
public BaseClass2,  
public BaseClass1 
{ 
  virtual VFnct2(); 
  . 
  . 
}; 

 . 
 . 
VFnct2 

member data

vfnct 

vfnct 
. 
. 

BaseStruct1

. 

.

BaseStruct2

DerivedStruct 
DerivedStruct 
Function Table

 . 
 . 
VFnct1 

BaseStruct1 
Function Table

Listing 35  Multiple 
Inheritance and Virtual 

Functions 
Figure 9  Multiple Inheritance and Virtual Functions 

The object-oriented stew is stirred-up a bit more when both virtual functions and virtual 
inheritance enters into the pot (Listing 36 and Figure 10).  Not only does a function call have to 
pass through the virtual function table look-up and a possible adjuster thunk, but it could also 
pass through one or more levels of virtual inheritance.  The amount of possible overhead is high 
and costly and, to say the least, should be avoided. 
 



class BaseClass1 
{ 
  virtual VFnct1(); 
  . 
  . 
}; 
 
class DerivedClass : 
virtual BaseClass1 
{ 
  virtual VFnct2(); 
  . 
  . 
}; 

 . 
 . 
VFnct2 

DerivedStruct 
Function Table

 . 
 . 
VFnct1 

BaseStruct1 
Function Table

 . 
 . 
BaseStruct

DerivedStruct
Base Table 

vbase 
vfnct 
member data

BaseStruct1
vfnct 
. 
. 

DerivedStruct 

Listing 36  Virtual 
Inheritance and Virtual 

Functions 

Figure 10  Virtual Inheritance and Virtual Functions 

Analysis 
 
Once again, the C style object organization and the simple C++ class produce equivalent 
assembly listings.  The real “dogs” are the virtual functions (Chart 5). 
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Chart 5  Object Constructs Efficiency Results 

Calling either a regular C function or a C++ class function is equivalently the same as far as the 
assembly language is concerned.  Simply pass the parameters onto the stack and call the function 
(Listings 37 and 38).  Once again, terms of efficiency are not involved in selected between these 
two styles. 

BSR  DataParentCount

Listing 38  Objects: C Style (H8) 

BL  ParentCount_DataClass

Listing 37  Objects: C++ Style 
(ARM)

 
Virtual functions prove themselves to be beasts just like their cousin, virtual inheritance.  Virtual 
function calls require twice as much code and execute less then half as fast.  The virtual function 
table must first be accessed, then the particular function is looked-up, and finally the function is 
called (Listing 39).  The whole concept of virtual functions is quite interesting, but cost more 
than they’re worth to firmware. 
 



LW   $8,0($25)  ; vfnct pointer. 
LW   $9,0($8)   ; function address. 
JAL  $24        ; call the vfnct. 

Listing 39  Objects: Virtual Functions (MIPS) 

Summary 
 
Again, efficiency is not an issue when dealing with C style objects and simple C++ object 
classes.  Virtual functions are the real issue.  If C++ is avoided throughout a project’s code base 
the inefficiencies of virtual functions will not rear their ugly head. 
 
 
Conclusion 
 
The objective of this entire treatment is to determine if the speed and size disadvantages of 
C/C++ can be minimized for a range of compiler/microprocessor platforms.  This study 
resoundly says: yes.  The assembly output of common C/C++ constructs demonstrate that the 
correct selection of coding techniques does guide the compiler to produce efficient code.  By 
reviewing the output of questionable C/C++ constructs not covered by this study will give the 
engineer an intimate understanding of how his or her techniques affect efficiency. 
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