
ISO/IEC JTC 1/SC 22/WG14

June 7, 2019

N 2388

v 2
Introduce the term storage instance
Modification request for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

There is a lack of terminology to describe the entity that is reserved and released by either an allocation

(malloc/free) or by the definition of a variable or compound literal. We introduce the new term storage
instance to distinguish it clearly from the term object.

1. INTRODUCTION

The current revision of the C standard has no precise words to describe the maximal area
of storage that is either obtained from

— allocating through malloc/calloc/realloc/aligned_alloc (allocated storage duration)
— instantiations of objects through the encouter of definitions (all other storage durations).

Already the term storage duration suggest that the “something” that is created through
such an event would be “storage”, but there are no precise words for it. In the contrary these
beast are called very differently in different places. Some citations from the C standard:

— ... a new instance of the object is created each time ..
— ... Allocated objects have no declared type. ...
— ... that would not make the structure larger than the object being accessed ...
— The value of a pointer that refers to space deallocated by a call to the free or realloc

function ...
— ... functions return a null pointer or a pointer to an allocated object ...
— The longjmp that returns control back to the point of the setjmp-invocation might cause

memory associated with a variable length array object to be squandered.

The terms “space”, “storage”, “region of storage”, “memory”, and (maximal)“object” de-
scribe basically all the same thing, namely a byte array that is reserved by a certain event
during execution (or startup). Also, the term “storage” is also used as a short hand for
external storage devices, which does not help to clarify the terms.
Especially the use of the term “object” for such a varying range of concepts is unfortunate
and produces a lot of confusion. There is a footnote

When referenced, an object can be interpreted as having a particular type.

This seems to imply that all objects, in contrast to “allocated space” for example, have a
type. Also objects can have subobjects, e.g the members of a structure object are themselves
objects.

2. FIX TERMINOLOGY

We propose to add the term storage instance, as being a

the inclusion-maximal region of data storage in the execution environment that
is created when either an object definition or an allocation is encountered

Two aspects of this definition are important and distinguish this term from the term object:

(1) A storage instance is inclusion-maximal. In contrast to that “objects” can also be sub-
objects of a larger object.

(2) A storage instance is created by a specific event, an object definition or an allocation. By
the effective type rule objects can pop into existence when allocated storage is written

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N2388:2 Jens Gustedt

by using an lvalue of a specific type, and thus may not have such a defining event that
creates them.

The choice for the term itself (storage instance) stems from the fact that it seemed the
easiest to integrate to the closely related concepts of storage duration and storage class.
Also, this ensures consistent terminology: storage should be the entity that is target of a
store operation. The instance part of the term is important to emphasize that this is an
entity that has temporal limits within the execution.
Other terms than are specified as we go:

— the start address as the address of the first byte of a storage instance;
— the end address as the one-past address of the storage instance;
— the byte address of an object as being the address of the first byte in the storage instance

that represents it;
— the byte offset of an object as being the byte position of the first byte in the storage

instance that represents it;
— the address space of a program execution by the collection of all the byte addresses that

occur during that execution.

Other properties of storage instances:

— Each addressable storage instance gives access to an array of untyped bytes that has the
allocated or defined size and that has a constant address, if any.

— Each object definition and each call to an allocation function creates a new and unique
storage instance, even if an address for the byte array is reused.

— Some object literals can share storage instances that represent them, namely string literals
and compound literals with a const-qualified type.

— Two distinct storage instances that are alive simultaneously have disjoint byte arrays.
— The end address of one storage instance can be the start address of another. These are

then said to follow each other immediately.
— No assumption about the specific ordering of storage instances in the address space can

be made, neither through syntax (declaration order) or sequencing of allocation events.

3. SUGGESTED CHANGES

This proposal is only intended to clarify the existing model and not to add any new features.
For clarification, realitively few text additions and modifications are needed. They can all
be found in the appendix that consists of the relevant pages of diff-mark to the current C2x
draft. Beware, that these pages are not contiguous.

3.1. Text additions

We propose three text additions, that introduce the term and put it into context:

3.19new:. A definition of the term with four notes that clarify where “storage instances”
come from, their relative placement and accessibility by different threads.
6.2.6.1, p1:. This puts storage instances into their context (object representations) and
states their basic properties, in particular that most of them can be viewed as a byte
array. A footnote clarifies the absence of any induced positioning between any storage
instances.
6.2.6.1, p3:. Introduce object representations more clearly.

3.2. Text modifications

With these additions there are two types of text modifications remaining, namely some
that really only are replacements of terms (space → storage instance, e.g.) and others that
undergo deeper changes. For the latter we have:

Introduce the term storage instance N2388:3

6.2.4:. Here the paragraphs 1 and 2 are swapped, and the now paragraph 2 is a bit
sharpened.
6.4.5, p7 and 6.5.2.5, p7. We unify the footnotes that state that storage instances
may be shared for string literals and compound literals.
6.5, p18:. Clarify the extend of a flexible array member.
6.7, p5. We emphasize on the fact that the storage instance created by a variable defi-
nition is unique.
7.22.3:. The text for “Storage management functions” is clarified by a consequent use
of the new terminology. Clarification that realloc does a byte-wise copy of the initial
part (as if by memcpy), and a detailed note (7.22.3.5 p5) to emphasize on the implications
for the created storage instance.
J.1. The fact that the relative ordering of storage instances is unspecified is summarized
in a single bullet point.

Appendix: pages with diffmarks of the proposed changes
The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

contains four separate memory locations: The member a, and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth
memory location. The bit-fields b and c cannot be concurrently modified, but b and a, for example, can be.

3.15
1 object

region of data storage in the execution environment, the contents of which can represent values
2 Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16
1 parameter

formal parameter

DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17
1 recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.18
1 runtime-constraint

requirement on a program when calling a library function
2 Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be

diagnosed at translation time.

3 Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

4 Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.19
1 storage instance

:::
the

:::::::::::::::::
inclusion-maximal

::::::
region

:::
of

::::
data

:::::::
storage

:::
in

:::
the

::::::::::
execution

::::::::::::
environment

::::
that

::
is

:::::::
created

::::::
when

:::::
either

:::
an

:::::
object

::::::::::
definition

::
or

:::
an

:::::::::
allocation

::
is

:::::::::::
encountered

:

2 Note 1 to entry:
::::::
Storage

:::::::
instances

::
are

::::::
created

:::
and

::::::::
destroyed

:::::
when

:::::
specific

::::::::
language

:::::::
constructs

:::::
(6.2.4)

:::
are

:::
met

::::::
during

::::::
program

::::::::
execution,

:::::::
including

:::::::
program

:::::
startup,

::
or
:::::
when

:::::
specific

::::::
library

:::::::
functions

:::::
(7.22.3)

:::
are

:::::
called.

3 Note 2 to entry:
::
A

::::
given

:::::
storage

:::::::
instance

:::
may

::
or

::::
may

::
not

::::
have

:
a
:::::::
memory

::::::
address,

:::
and

:::
may

::
or
::::
may

:::
not

::
be

:::::::
accessible

::::
from

::
all

:::::
threads

::
of
::::::::
execution.

4 Note 3 to entry:
:
A
::::::
storage

::::::
instance

::::
with

:
a
:::::::
memory

::::::
address

::::::
occupies

::
a
:::::
region

::
of

:::
zero

::
or
:::::

more
::::
bytes

::
of

::::::::
contiguous

::::
data

:::::
storage

::
in

:::
the

:::::::
execution

::::::::::
environment.

5 Note 4 to entry:
::

One
::

or
::::

more
::::::

objects
:::
may

::
be

:::::::::
represented

:::::
within

:::
the

::::
same

:::::
storage

:::::::
instance,

::::
such

::
as

:::
two

::::::::
subobjects

:::::
within

::
an

::::
object

::
of

:::::::
structure

::::
type,

:::
two

:::::::::::
const-qualified

::::::::
compound

::::::
literals

:::
with

:::::::
identical

::::
object

:::::::::::
representation,

::
or

:::
two

:::::
string

:::::
literals

::::
where

:::
one

::
is

:::
the

::::::
terminal

:::::::
character

:::::::
sequence

::
of

::
the

:::::
other.

3.20
1 value

precise meaning of the contents of an object when interpreted as having a specific type

3.20.1
1 implementation-defined value

6 General § 3.20.1

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations and object lifetimes
An object has a that determines its lifetime. There are four storage durations: static, thread,
automatic, and allocated. Allocated storage is described in ??.

1 The lifetime of an object is the portion of program execution during which storage
:
a
:::::::
storage

::::::::
instance

is guaranteed to be reserved for it.35) An object exists, has a constant address,36)
:
if
::::
any,

:
and retains

its last-stored value throughout its lifetime.37) If an object is referred to outside of its lifetime, the
behavior is undefined. The value of a pointer becomes indeterminate when the object it points to (or
just past) reaches the end of its lifetime.

2 An
::::
The

:::::::
lifetime

::
of

:::
an

:::::
object

::
is
:::::::::::
determined

:::
by

::
its

:
storage duration .

::::::
There

:::
are

::::
four

:::::::
storage

::::::::::
durations:

:::::
static,

:::::::
thread,

::::::::::
automatic,

::::
and

:::::::::
allocated.

:::::::::
Allocated

:::::::
storage

::::
and

::
its

::::::::
duration

::::
are

:::::::::
described

::
in

::::::
7.22.3.

:

3
:::
The

:::::::
storage

::::::::
instance

:::
of

::
an

:
object whose identifier is declared without the storage-class specifier

_Thread_local, and either with external or internal linkage or with the storage-class specifier
static, has static storage duration . Its

:
,
::
as

:::
do

:::::::
storage

::::::::
instances

:::
for

::::::
string

::::::
literals

::::
and

:::::
some

::::::::::
compound

::::::
literals.

::::
The

::::::::
object’s lifetime is the entire execution of the program and its stored value is initialized

only once, prior to program startup.

4 An
::::
The

:::::::
storage

:::::::
instance

:::
of

::
an

:
object whose identifier is declared with the storage-class specifier

_Thread_local has thread storage duration. Its
::::
The

:::::::
object’s lifetime is the entire execution of the

thread for which it is created, and its stored value is initialized when the thread is started. There
is a distinct object

::::::::
instance

::
of

:::
the

::::::
object

::::
and

:::::::::
associated

:::::::
storage

:
per thread, and use of the declared

name in an expression refers to the object associated with the thread evaluating the expression. The
result of attempting to indirectly access an object with thread storage duration from a thread other
than the one with which the object is associated is implementation-defined.

5 An
::::
The

:::::::
storage

:::::::
instance

:::
of

::
an

:
object whose identifier is declared with no linkage and without the

storage-class specifier static has automatic storage duration, as do
::
are

:::::::
storage

:::::::::
instances

::
of

::::::::::
temporary

::::::
objects

::::
and

:
some compound literals. The result of attempting to indirectly access an object with

automatic storage duration from a thread other than the one with which the object is associated is
implementation-defined.

6 For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object

::::
and

:::::::::
associated

:::::::
storage

:
is created each

time. The initial value of the object is indeterminate. If an initialization is specified for the object, it
is performed each time the declaration or compound literal is reached in the execution of the block;
otherwise, the value becomes indeterminate each time the declaration is reached.

7 For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.38) If the scope is
entered recursively, a new instance of the object

:::
and

::::::::::
associated

:::::::
storage is created each time. The

initial value of the object is indeterminate.

8 A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an object

:
a
:
temporary object with automatic storage duration and temporary lifetime.39) Its

lifetime begins when the expression is evaluated and its initial value is the value of the expression.
Its lifetime ends when the evaluation of the containing full expression ends. Any attempt to modify

35)
:::
This

:::::
storage

:::::::
instance

::::
might

:::
not

::
be

:::::
unique

::
if
:::
the

::::
object

::
is

:
a
::::
string

:::::
literal,

:
a
:::::::::

compound
::::
literal

::
or

:::
has

::::::::
temporary

::::::
lifetime.

36)The term "constant address" means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

37)In the case of a volatile object, the last store need not be explicit in the program.
38)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior

to the declaration, leaves the scope of the declaration.
39)The address of such an object is taken implicitly when an array member is accessed.

§ 6.2.4 Language 35

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

32 EXAMPLE 2 The type designated as "struct tag (*[5])(float)" has type "array of pointer to function returning
struct tag". The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types
6.2.6.1 General

1 The representations of all types are unspecified except as stated in this subclause.
:::
An

::::::
object

::
is

::::::::::
represented

:::
(or

:::::
held)

:::
by

:
a
:::::::
storage

::::::::
instance

:::
(or

::::
part

:::::::
thereof)

::::
that

::
is

:::::
either

:::::::
created

:::
by

::
an

:::::::::
allocation

::::
(for

::::::::
allocated

:::::::
storage

:::::::::
duration),

:::
at

::::::::
program

:::::::
startup

::::
(for

:::::
static

:::::::
storage

:::::::::
duration),

:::
at

::::::
thread

:::::::
startup

::::
(for

::::::
thread

:::::::
storage

:::::::::
duration),

:::
or

:::::
when

:::
the

::::::::
lifetime

::
of

:::
the

::::::
object

:::::
starts

::::
(for

::::::::::
automatic

:::::::
storage

:::::::::
duration).

:::
An

:::::::::::
addressable

:::::::
storage

::::::::
instance54)

:
of

::::
size

:::
m

::::::::
provides

::::::
access

:::
to

:
a
:::::
byte

:::::
array

::
of

:::::::
length

::
m

:::::
such

::::
that

:::
the

:::::::::
addresses

:::
of

::
all

::::::
bytes

::::::::::
composing

::::
the

:::::
array

:::::
shall

:::
be

:::::::
unique

::::
and

::::::::
constant

:::::::
during

:::
the

::::::::
lifetime

::
of

:::
the

:::::::
storage

:::::::::
instance.

::::
The

:::::::
address

:::
of

:::
the

::::
first

::::
byte

:::
of

:::
the

:::::
array

::
is
::::

the start address
:
of

::::
the

:::::::
storage

::::::::
instance,

:::
the

:::::::
address

::::
one

::::::::
element

:::::::
beyond

:::
the

:::::
array

::
at

::::::
index

::
m

::
is

::
its

:
end address

:
.
::
A

:::::::
storage

::::::::
instance

::
Y

::::::::::
immediately

::::::
follows

::::::
storage

::::::::
instance

::
X

:
if
:::
the

:::::
start

:::::::
address

::
of

:::
Y

::::::::
coincides

:::::
with

:::
the

::::
end

:::::::
address

:::
of

::
X .

::::::
Other

:::::
than

:::::
that,

:::
no

::::
two

:::::::
distinct

::::
and

:::
life

:::::::
storage

:::::::::
instances

:::::
shall

:::::
share

::
a
::::
byte

::::::::
address

::::
and

::::
this

:::::::::
document

::::::::
imposes

::
no

:::::::::::
constraints

:::::
about

::
a

:::::::
relative

::::::::
ordering

::
of

:::::::
storage

:::::::::
instances

:::::::::
whenever

:::::
they

:::
are

:::::::
created.55)

::::
The

:::::::::
addresses

::
of

:::
the

:::::
bytes

:::
of

::
all

:::::::
storage

:::::::::
instances

::
of

:
a
::::::::
program

:::::::::
execution

:::::
form

::
its

:
address

space .
:

2 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

3 Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.56)

4 Values stored in non-bit-field objects of any other object type consist of n× CHAR_BIT bits, where
n is the size of an object of that type, in bytes. The value may be copied into an object of type

::::::::::
Converting

::
a

:::::::
pointer

::
of

::::
such

:::
an

::::::
object

::
to

:
a
:::::::
pointer

:::
to

:
a
:::::::::
character

::::
type

:::
or

::::
void

::::::
yields

::
a

:::::::
pointer

::::
into

:::
the

::::
byte

::::::
array

::
of

::::
the

:::::::
storage

::::::::
instance

:::::
such

::::
that

:::
the

:::::::
values

::
of

::::
the

::::
first

:
n] (e.g., by memcpy); the

resulting
:::::
bytes

::::::::::
determine

:::
the

::::::
value

::
of

:::
the

:::::::
object;

:::
the

::::::::
position

::
of

::::
the

::::
first

::::
byte

::
of

::::::
these

::
in

:::
the

:::::
byte

:::::
array

::
is

:::
the

:
byte offset

:
of

::::
the

::::::
object

::
in

:::
its

:::::::
storage

::::::::
instance,

:::
the

::::::::::
converted

:::::::
address

::
is
::::::

called
::::
the byte

address
:
of

::::
the

::::::
object,

::::
and

:::
the

:
set of bytes is called the object representation of the value.

:::
The

::::::
object

:::::::::::::
representation

::::
may

:::
be

:::::
used

::
to

:::::
copy

::::
the

:::::
value

:::
of

:::
the

::::::
object

::::
into

::::::::
another

::::::
object

:::::
(e.g.,

:::
by

::::::::
memcpy).

Values stored in bit-fields consist of m bits, where m is the size specified for the bit-field. The object
representation is the set of m bits the bit-field comprises in the addressable storage unit holding it.
Two values (other than NaNs) with the same object representation compare equal, but values that
compare equal may have different object representations.

5 Certain object representations need not represent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue expression that does not have character
type, the behavior is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.57) Such a representation is called a trap representation.

6 When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values.58)

54)
::
All

::::::
storage

:::::::
instances

:::
that

:::
do

::
not

:::::::
originate

::::
from

:::
an

::::
object

::::::::
definition

::::
with

:::::::
register

::::::
storage

::::
class

::
are

:::::::::
addressable

:::
by

::::
using

:::
the

:::::
pointer

::::
value

::::
that

:::
was

:::::::
returned

::
by

:::
their

::::::::
allocation

:::
(for

:::::::
allocated

:::::
storage

:::::::
duration)

::
or

::
by

:::::::
applying

:::
the

::::::::
address-of

::::::
operator

:
&
::::::
(6.5.3.2)

::
to

:::
the

::::
object

:::
that

::::
gave

:::
rise

::
to

::::
their

:::::::
definition

:::
(for

::::
other

:::::
storage

:::::::::
durations).

55)
:::
This

:::::
means

:::
that

:::
no

::::::
relative

::::::
ordering

:::::::
between

::::::
storage

:::::::
instances

:::
and

:::
the

:::::
objects

::::
they

:::::::
represent

:::
can

::
be

:::::::
deduced

::::
from

::::::
syntactic

::::::::
properties

::
of

::
the

:::::::
program

::::
(such

::
as

:::::::::
declaration

::::
order

::
or

::::
order

:::::
inside

:
a
::::::::
parameter

:::
list)

::
or

::::::::
sequencing

::::::::
properties

::
of

::
the

:::::::
execution

:::::
(such

::
as

:::
one

:::::::::
instantiation

::::::::
happening

:::::
before

::::::
another).

:
56)A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive

bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2CHAR

_BIT − 1.
57)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value

of the variable cannot be used until a proper value is stored in it.
58)Thus, for example, structure assignment need not copy any padding bits.

40 Language § 6.2.6.1

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

The value of a structure or union object is never a trap representation, even though the value of a
member of the structure or union object may be a trap representation.

7 When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

8 Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.59) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

9 Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5
:
),
::::::::

address
:::::

and
::::::::::
indirection

::::::::::
operators

::::::
(6.5.3.2), lvalues, arrays, and function designators (6.3.2.1), order and consistency (7.17.3).

6.2.6.2 Integer types
1 For unsigned integer types other than unsigned char, the bits of the object representation shall be

divided into two groups: value bits and padding bits (there need not be any of the latter). If there are
N value bits, each bit shall represent a different power of 2 between 1 and 2N−1, so that objects of
that type shall be capable of representing values from 0 to 2N − 1 using a pure binary representation;
this shall be known as the value representation. The values of any padding bits are unspecified.60)

2 For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; signed char shall
not have any padding bits. There shall be exactly one sign bit. Each bit that is a value bit shall have
the same value as the same bit in the object representation of the corresponding unsigned type (if
there are M value bits in the signed type and N in the unsigned type, then M ≤ N). If the sign bit is
zero, it shall not affect the resulting value. If the sign bit is one, the value shall be modified in one of
the following ways:

— the corresponding value with sign bit 0 is negated (sign and magnitude);

— the sign bit has the value −(2M) (two’s complement);

— the sign bit has the value −(2M − 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all
value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’ complement), is a
trap representation or a normal value. In the case of sign and magnitude and ones’ complement, if
this representation is a normal value it is called a negative zero.

3 If the implementation supports negative zeros, they shall be generated only by:

— the &, |, ^,~ ,<< , and >> operators with operands that produce such a value;

— the+ ,- ,* , /, and % operators where one operand is a negative zero and the result is zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero, and whether
a negative zero becomes a normal zero when stored in an object.

4 If the implementation does not support negative zeros, the behavior of the &, |, ^, ~ , << , and >>
operators with operands that would produce such a value is undefined.

59)It is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp(&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

60)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow, and this cannot occur with unsigned types. All other combinations of padding bits are
alternative object representations of the value specified by the value bits.

§ 6.2.6.2 Language 41

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

6.3.2.3 Pointers
1 A pointer to void may be converted to or from a pointer to any object type. A pointer to any object

type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type void *, is called
a null pointer constant.73) If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

4 Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

5 An integer may be converted to any pointer type. Except as previously specified, the result is imple-
mentation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might be a trap representation.74)

6 Any pointer type may be converted to an integer type. Except as previously specified, the result
is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.

7 A pointer to an object type may be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned75) for the referenced type, the behavior is undefined. Otherwise,
when converted back again, the result shall compare equal to the original pointer. When a pointer
to an object is converted to a pointer to a character type

::
or

::::::
void , the result points to the lowest

addressed byte of the object. Successive increments of the result, up to the size of the object, yield
pointers to the remaining bytes

:
is
::::
the

::::
byte

:::::::
address

:
of the object.

8 A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types capable of
holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

73)The macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19.
74)The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with

the addressing structure of the execution environment.
75)In general, the concept "correctly aligned" is transitive: if a pointer to type A is correctly aligned for a pointer to type B,

which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

48 Language § 6.3.2.3

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

char32_t, respectively, and are initialized with the sequence of wide characters corresponding
to the multibyte character sequence, as defined by successive calls to the mbrtoc16, or mbrtoc32
function as appropriate for its type, with an implementation-defined current locale. The value of a
string literal containing a multibyte character or escape sequence not represented in the execution
character set is implementation-defined.

7 It is unspecified whether these arrays are distinct provided their elements have the appropriate
values.88) If the program attempts to modify such an array, the behavior is undefined.

8 EXAMPLE 1 This pair of adjacent character string literals

"\x12" "3"

produces a single character string literal containing the two characters whose values are’\x12’ and’3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

9 EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Likewise, each of the sequences

"a" "b" u"c"
"a" u"b" "c"
u"a" "b" u"c"
u"a" u"b" u"c"

is equivalent to

u"abc"

Forward references: common definitions <stddef.h> (7.19), the mbstowcs function (7.22.8.1),
Unicode utilities <uchar.h> (7.28).

6.4.6 Punctuators
Syntax

1 punctuator: one of
[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : :: ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

Semantics
2 A punctuator is a symbol that has independent syntactic and semantic significance. Depending on

context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an

88)
:::
This

:::::
allows

::::::::::::
implementations

::
to
::::
share

::::::
storage

:::::::
instances

::
for

:::::
string

:::::
literals

:::
and

:::::::
constant

::::::::
compound

:::::
literals

::::::
(6.5.2.5)

::::
with

::
the

::::
same

::
or

:::::::::
overlapping

::::::::::::
representations.

§ 6.4.6 Language 61

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

Semantics
3 A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of

initializers is a compound literal. It provides an unnamed object whose value is given by the initializer
list.111)

4 If the type name specifies an array of unknown size, the size is determined by the initializer list as
specified in 6.7.9, and the type of the compound literal is that of the completed array type. Otherwise
(when the type name specifies an object type), the type of the compound literal is that specified by
the type name. In either case, the result is an lvalue.

5 The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

6 All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.112)

7 String literals, and compound literals with const-qualified types, need not designate distinct ob-
jects.113)

8 EXAMPLE 1 The file scope definition

int *p = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

9 EXAMPLE 2 In contrast, in

void f(void)
{

int *p;
/*...*/
p = (int [2]){*p};
/*...*/

}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

10 EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

11 EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

12 EXAMPLE 5 The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char []){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

111)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an lvalue.
112)For example, subobjects without explicit initializers are initialized to zero.
113)

:::
This

:::::
allows

::::::::::::
implementations

::
to

::::
share

::::::
storage

:::::::
instances

::
for

:::::
string

:::::
literals

:::
and

::::::
constant

::::::::
compound

:::::
literals

::::
with

:::
the

::::
same

::
or

:::::::::
overlapping

:::::::::::
representations.

:

§ 6.5.2.5 Language 71

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

13 EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage
::::::
instance is shared.

14 EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

15 EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = &((struct s){ j++ });
if (j < 2) goto again;

return p == q && q->i == 1;
}

The function f() always returns the value 1.

16 Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which would
result in undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.9).

6.5.3 Unary operators
Syntax

1 unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
_Alignof (type-name)

unary-operator: one of
& * + - ~ !

6.5.3.1 Prefix increment and decrement operators
Constraints

1 The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

72 Language § 6.5.3.1

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

6.7 Declarations
Syntax

1 no-leading-attribute-declaration:
declaration-specifiers init-declarator-listopt ;
static_assert-declaration

declaration:
no-leading-attribute-declaration
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
attribute-declaration

declaration-specifiers:
declaration-specifier attribute-specifier-sequenceopt
declaration-specifier declaration-specifiers

declaration-specifier:
storage-class-specifier
type-specifier-qualifier
function-specifier

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

attribute-declaration:
attribute-specifier-sequence ;

Constraints
2 A declaration other than a static_assert or attribute declaration shall declare at least a declarator

(other than the parameters of a function or the members of a structure or union), a tag, or the
members of an enumeration.

3 If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— a typedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3.

4 All declarations in the same scope that refer to the same object or function shall specify compatible
types.

Semantics
5 A declaration specifies the interpretation and properties of a set of identifiers. A definition of an

identifier is a declaration for that identifier that:

— for an object, causes storage
:
a
:::::::
unique

:::::::
storage

::::::::
instance to be reserved for that object;

— for a function, includes the function body;129)

— for an enumeration constant, is the (only) declaration of the identifier;

— for a typedef name, is the first (or only) declaration of the identifier.

6 The declaration specifiers consist of a sequence of specifiers, followed by an optional attribute
specifier sequence, that indicate the linkage, storage duration, and part of the type of the entities that

129)Function definitions have a different syntax, described in 6.9.1.

§ 6.7 Language 87

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

the structure or union. If the member declaration list does not contain any named members, either
directly or via an anonymous structure or anonymous union, the behavior is undefined. The type is
incomplete until immediately after the} that terminates the list, and complete thereafter.

11 A member of a structure or union may have any complete object type other than a variably modified
type.133) In addition, a member may be declared to consist of a specified number of bits (including
a sign bit, if any). Such a member is called a bit-field;134) its width is preceded by a colon.

12 A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.135) If the value 0 or 1 is stored into a nonzero-width bit-field of type _Bool, the
value of the bit-field shall compare equal to the value stored; a _Bool bit-field has the semantics of a
_Bool.

13 An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

14 A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.136) As a special case, a bit-field structure member with a width of 0 indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

15 An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union, keeping their structure or union layout. This applies recursively
if the containing structure or union is also anonymous.

16 Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

17 Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

18 The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides), and
vice versa.

19 There may be unnamed padding at the end of a structure or union.

20 As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object

::::::
storage

::::::::
instance being accessed; the offset of the array shall remain that of the flexible array

member, even if this would differ from that of the replacement array. If this array would have no
elements, it behaves as if it had one element but the behavior is undefined if any attempt is made to

133)A structure or union cannot contain a member with a variably modified type because member names are not ordinary
identifiers as defined in 6.2.3.
134)The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field

objects.
135)As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is implemen-

tation-defined whether the bit-field is signed or unsigned.
136)An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

92 Language § 6.7.2.1

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage

::::::
instance for which is defined elsewhere.

9 EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;

void fcompat(void)
{

int a[n][6][m];
int (*p)[4][n+1];
int c[n][n][6][m];
int (*r)[n][n][n+1];
p = a; // invalid: not compatible because 4 != 6
r = c; // compatible, but defined behavior only if

// n == 6 and m == n+1
}

10 EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or function prototype scope.
Array objects declared with the _Thread_local, static, or extern storage-class specifier cannot have a variable length
array (VLA) type. However, an object declared with the static storage-class specifier can have a VM type (that is, a pointer
to a VLA type). Finally, all identifiers declared with a VM type have to be ordinary identifiers and cannot, therefore, be
members of structures or unions.

extern int n;
int A[n]; // invalid: file scope VLA
extern int (*p2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM

void fvla(int m, int C[m][m]); // valid: VLA with prototype scope

void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{

typedef int VLA[m][m]; // valid: block scope typedef VLA

struct tag {
int (*y)[n]; // invalid: y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier

};
int D[m]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (*s)[m]; // valid: auto pointer to VLA
extern int (*r)[m]; // invalid: r has linkage and points to VLA
static int (*q)[m] = &B; // valid: q is a static block pointer to VLA

}

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.9).

6.7.6.3 Function declarators (including prototypes)
Constraints

1 A function declarator shall not specify a return type that is a function type or an array type.

2 The only storage-class specifier that shall occur in a parameter declaration is register.

3 An identifier list in a function declarator that is not part of a definition of that function shall be
empty.

4 After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

§ 6.7.6.3 Language 107

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

6.9 External definitions
Syntax

1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints
2 The storage-class specifiers auto and register shall not appear in the declaration specifiers in an

external declaration.

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
(other than as a part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), there shall be exactly one external definition for the identifier in the translation unit.

Semantics
4 As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which

consists of a sequence of external declarations. These are described as "external" because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that
also causes storage

:
a
:::::::
storage

::::::::
instance to be reserved for an object or

::::::::
provides

:::
the

:::::
body

:::
of a function

named by the identifier is a definition.

5 An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), somewhere in the entire program there shall be exactly one external definition for the
identifier; otherwise, there shall be no more than one.175)

6.9.1 Function definitions
Syntax

1 function-definition:
attribute-specifier-sequenceopt declaration-specifiers declarator

declaration-listopt compound-statement

declaration-list:
no-leading-attribute-declaration
declaration-list no-leading-attribute-declaration

Constraints
2 The identifier declared in a function definition (which is the name of the function) shall have a

function type, as specified by the declarator portion of the function definition.176)

3 The return type of a function shall be void or a complete object type other than array type.

4 The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

5 If the declarator includes a parameter type list, the declaration of each parameter shall include an
identifier, except for the special case of a parameter list consisting of a single parameter of type void,

175)Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.

130 Language § 6.9.1

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

in which case there shall not be an identifier. No declaration list shall follow.

6 If the declarator includes an identifier list, each declaration in the declaration list shall have at least
one declarator, those declarators shall declare only identifiers from the identifier list, and every
identifier in the identifier list shall be declared. An identifier declared as a typedef name shall not
be redeclared as a parameter. The declarations in the declaration list shall contain no storage-class
specifier other than register and no initializations.

Semantics
7 The optional attribute specifier sequence in a function definition appertains to the function.

8 The declarator in a function definition specifies the name of the function being defined and the
identifiers of its parameters. If the declarator includes a parameter type list, the list also specifies the
types of all the parameters; such a declarator also serves as a function prototype for later calls to the
same function in the same translation unit. If the declarator includes an identifier list,177) the types
of the parameters shall be declared in a following declaration list. In either case, the type of each
parameter is adjusted as described in 6.7.6.3 for a parameter type list; the resulting type shall be a
complete object type.

9 If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

10 Each parameter has automatic storage duration; its identifier is an lvalue.The layout of the storage
for parameters is unspecified. 178)

11 On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

12 After all parameters have been assigned, the compound statement that constitutes the body of the
function definition is executed.

13 Unless otherwise specified, if the } that terminates a function is reached, and the value of the
function call is used by the caller, the behavior is undefined.

14 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a: b;
}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

176)The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); // type F is "function with no parameters
// returning int"

F f, g; // f and g both have type compatible with F
F f { /* ... */ } // WRONG: syntax/constraint error
F g() { /* ... */ } // WRONG: declares that g returns a function
int f(void) { /* ... */ } // RIGHT: f has type compatible with F
int g() { /* ... */ } // RIGHT: g has type compatible with F
F *e(void) { /* ... */ } // e returns a pointer to a function
F *((e))(void) { /* ... */ } // same: parentheses irrelevant
int (*fp)(void); // fp points to a function that has type F
F *Fp; // Fp points to a function that has type F

177)See "future language directions" (6.11.7).
178)

:
A
::::::::
parameter

:::::::
identifier

::::::
cannot

::
be

::::::::
redeclared

::
in

:::
the

::::::
function

:::::
body

:::::
except

::
in

::
an

:::::::
enclosed

:::::
block.

:::
As

:::
any

:::::
object

::::
with

:::::::
automatic

::::::
storage

:::::::
duration,

:::
each

::::::::
parameter

::::
gives

:::
rise

::
to

:
a
:::::
unique

::::::
storage

::::::
instance

::::::::::
representing

:
it.
::::

Thus
:::

the
::::::
relative

:::::
layout

:
of
:::::::::

parameters
::
in

::
the

::::::
address

::::
space

::
is

:::::::::
unspecified.

§ 6.9.1 Language 131

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

2 No other identifiers are reserved. If the program declares or defines an identifier in a context in
which it is reserved (other than as allowed by 7.1.4), or defines a reserved identifier or attribute
token described in 6.7.11.1 as a macro name, the behavior is undefined.

3 If the program removes (with #undef) any macro definition of an identifier in the first group listed
above or attribute token described in 6.7.11.1, the behavior is undefined.

7.1.4 Use of library functions
1 Each of the following statements applies unless explicitly stated otherwise in the detailed descrip-

tions that follow:

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer to

:
a non-modifiable storage

:::::::
instance

:
when the corresponding parameter is not const-qualified) or

a type (after default argument promotion) not expected by a function with a variable number
of arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that would be
valid if the pointer did point to the first element of such an array) are in fact valid.

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.201)

The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.202)

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.203)

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in #if preprocessing directives.

2 Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

3 There is a sequence point immediately before a library function returns.

201)This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.

202)Such macros might not contain the sequence points that the corresponding function calls do.
203)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can

provide special semantics for such names. For example, the identifier _BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

152 Library § 7.1.4

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

Description
2 The longjmp function restores the environment saved by the most recent invocation of the setjmp

macro in the same invocation of the program with the corresponding jmp_buf argument. If there
has been no such invocation, or if the invocation was from another thread of execution, or if the
function containing the invocation of the setjmp macro has terminated execution271) in the interim,
or if the invocation of the setjmp macro was within the scope of an identifier with variably modified
type and execution has left that scope in the interim, the behavior is undefined.

3 All accessible objects have values, and all other components of the abstract machine272) have state,
as of the time the longjmp function was called, except that the values of objects of automatic storage
duration that are local to the function containing the invocation of the corresponding setjmp macro
that do not have volatile-qualified type and have been changed between the setjmp invocation and
longjmp call are indeterminate.

Returns
4 After longjmp is completed, thread execution continues as if the corresponding invocation of the

setjmp macro had just returned the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

5 EXAMPLE The longjmp function that returns control back to the point of the setjmp invocation might cause memory
::

the

:::::
storage

::::::
instance

:
associated with a variable length array object to be squandered.

#include <setjmp.h>
jmp_buf buf;
void g(int n);
void h(int n);
int n = 6;

void f(void)
{

int x[n]; // valid: f is not terminated
setjmp(buf);
g(n);

}

void g(int n)
{

int a[n]; // a may remain allocated
h(n);

}

void h(int n)
{

int b[n]; // b may remain allocated
longjmp(buf, 2); // might cause memory loss

}

271)For example, by executing a return statement or because another longjmp call has caused a transfer to a setjmp
invocation in a function earlier in the set of nested calls.
272)This includes, but is not limited to, the floating-point status flags and the state of open files.

234 Library § 7.13.2.1

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

Description
2 The srand function uses the argument as a seed for a new sequence of pseudo-random numbers

to be returned by subsequent calls to rand. If srand is then called with the same seed value, the
sequence of pseudo-random numbers shall be repeated. If rand is called before any calls to srand
have been made, the same sequence shall be generated as when srand is first called with a seed
value of 1.

3 The srand function is not required to avoid data races with other calls to pseudo-random sequence
generation functions. The implementation shall behave as if no library function calls the srand
function.

Returns
4 The srand function returns no value.
5 EXAMPLE The following functions define a portable implementation of rand and srand.

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767
{

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)
{

next = seed;
}

7.22.3 Storage management functions
1 The order and contiguity of storage allocated by successive calls to the

::
If

:::
the

:::::::::
allocation

:::::::::
succeeds,

:::
the

::::::
pointer

:::
to

:
a
:::::::
storage

::::::::
instance

::::::::
returned

::
by

::
a
:::
call

:::
to aligned_alloc, calloc, malloc, and

::
or realloc

functions is unspecified. The pointer returned if the allocation succeeds is suitably aligned so that
it may be assigned to a pointer to any type of object with a fundamental alignment requirement and
size less than or equal to the size requested. It may then be used to access such an object or an array
of such objects in the space

:::::::
storage

::::::::
instance allocated (until the space

::::::
storage

::::::::
instance

:
is explicitly

deallocated). The lifetime of an allocated object
:::::::
storage

:::::::
instance

:
extends from the allocation until the

deallocation. Each such allocation shall yield a pointer to an object
:
a
:::::::
storage

::::::::
instance

::::
that

::
is disjoint

from any other object
::::::
storage

::::::::
instance. The pointer returned points to the start (lowest byte address

)
:::::::
address

:
of the allocated space

:::::::
storage

::::::::
instance. If the space

:::::::
storage

:::::::
instance

:
cannot be allocated, a

null pointer is returned. If the size of the space
:::::::
storage

::::::::
instance requested is zero, the behavior is

implementation-defined: either a null pointer is returned to indicate an error, or the behavior is as if
the size were some nonzero value, except that

:::::::
address

::
of

:
a
:::::::
storage

::::::::
instance

::
of

::::
size

::::
zero

::
is
:::::::::
returned.

:::
For

:::
the

::::::
latter, the returned pointer shall not be used to access an object.

2 For purposes of determining the existence of a data race, memory allocation functions behave as
though they accessed only memory locations

:::::::
storage

::::::::
instances

:
accessible through their arguments

and not other static duration storage
::::::::
instances. These functions may, however, visibly modify the

storage
:::::::
instance

:
that they allocate or deallocate. Calls to these functions that allocate or deallocate

::::::
storage

:::::::::
instances

::
in

:
a particular region of memory

:::
the

:::::::
address

::::::
space shall occur in a single total

order, and each such deallocation call shall synchronize with the next allocation (if any) in this
order.321)

7.22.3.1 The aligned_alloc function
Synopsis

321)
:::
This

:::::
means

:::
that

::
an

::::::::::::
implementation

:::
may

::::
only

::::
reuse

:
a
::::
valid

::::::
address

:::
that

::
is

:::::::
computed

::::
from

::
an

:::::::
allocated

::::::
storage

::::::
instance

::
for

:
a
:::::::
different

::::::
allocated

::::::
storage

::::::
instance

::
if

::
the

::::
calls

::
to

:::::
allocate

:::
and

::::::::
deallocate

:::
the

:::::
storage

:::::::
instances

:::::::::
synchronize.

300 Library § 7.22.3.1

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

1 #include <stdlib.h>
void *aligned_alloc(size_t alignment, size_t size);

Description
2 The aligned_alloc function allocates space for an object

:
a
::::::::

storage
:::::::
instance

:
whose alignment is

specified by alignment, whose size is specified by size, and whose value is indeterminate
::::
byte

::::::
values

:::
are

:::::::::::
unspecified. If the value of alignment is not a valid alignment supported by the

implementation the function shall fail by returning a null pointer.

Returns
3 The aligned_alloc function returns either a null pointer or a pointer to the allocated space

:::::::
storage

:::::::
instance.

7.22.3.2 The calloc function
Synopsis

1 #include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description
2 The calloc function allocates space

:
a
:::::::
storage

::::::::
instance for an array of nmemb objects, each of whose

size is size. The space
::::::
storage

::::::::
instance is initialized to all bits zero.322)

Returns
3 The calloc function returns either a null pointer or a pointer to the allocated space

:::::::
storage

::::::::
instance.

7.22.3.3 The free function
Synopsis

1 #include <stdlib.h>
void free(void *ptr);

Description
2 The free function causes the space

::::::
storage

::::::::
instance pointed to by ptr to be deallocated, that is,

made available for further allocation.
:::
use.323) If ptr is a null pointer, no action occurs. Otherwise, if

the argument does not match a pointer earlier returned by a memory
:::::::
storage management function,

or if the space
:::::::
storage

:::::::
instance

:
has been deallocated by a call to free or realloc, the behavior is

undefined.

Returns
3 The free function returns no value.

7.22.3.4 The malloc function
Synopsis

1 #include <stdlib.h>
void *malloc(size_t size);

Description
2 The malloc function allocates space for an object

:
a
:::::::
storage

::::::::
instance

:
whose size is specified by size

and whose value is indeterminate
::::
byte

::::::
values

:::
are

:::::::::::
unspecified.

Returns
3 The malloc function returns either a null pointer or a pointer to the allocated space

:::::::
storage

::::::::
instance.

322)Note that this need not be the same as the representation of floating-point zero or a null pointer constant.
323)

:::
That

:::::
means

:::
that

:::
the

::::::::::::
implementation

::::
may

::::
reuse

:::
the

::::::
address

::::
range

::
of

:::
the

:::::
storage

:::::::
instance

:::::::::
(determined

::
by

:::
ptr

::::
and

::
its

:::
size)

:::
for

:::
any

:::::
storage

::::::
instance

:::::
whose

::::::::::
instantiation

:::::::::
synchronizes

::::
with

:::
the

:::
call.

§ 7.22.3.4 Library 301

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

7.22.3.5 The realloc function
Synopsis

1 #include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description
2 The realloc function deallocates the old object

:::::::
storage

::::::::
instance pointed to by ptr and returns a

pointer to a new object
::::::
storage

::::::::
instance

:
that has the size specified by size. The contents of the

new object shall be the same as that
::::
bytes

:
of the old object prior to deallocation,

:::::::
storage

::::::::
instance

up to the lesser of the new and old sizes .
::
are

:::::::
copied

::
as

::
if

:::
by

:::::::
memcpy

::
to

:::
the

::::::
initial

:::::
bytes

::
of

::::
the

::::
new

::::::
storage

:::::::::
instance. Any bytes in the new object

::::::
storage

::::::::
instance beyond the size of the old object have

indeterminate
::::::::::
unspecified

:
values.

3 If ptr is a null pointer, the realloc function behaves like the malloc function for the specified
size. Otherwise, if ptr does not match a pointer earlier returned by a memory

:::::::
storage management

function, or if the space
:::::::
storage

::::::::
instance has been deallocated by a call to the free or realloc

function, the behavior is undefined. If size is nonzero and memory for the new object is not
:::
no

::::::
storage

::::::::
instance

::
is

:
allocated, the old object

:::::::
storage

::::::::
instance is not deallocated. If size is zero and

memory for the new object is not
::
no

:::::::
storage

::::::::
instance

:::
is allocated, it is implementation-defined

whether the old object
:::::::
storage

::::::::
instance

:
is deallocated. If the old object

:::::::
storage

::::::::
instance

:
is not

deallocated, its value
:
it
:
shall be unchanged.

Returns
4 The realloc function returns a pointer to the new object

::::::
storage

::::::::
instance (which may have the

same value as a pointer to the old object
::::::
storage

::::::::
instance), or a null pointer if the new object has not

::
no

:::::
new

::::::
storage

::::::::
instance

::::
has been allocated.

5 NOTE
:
If
:
a
:::

call
::

to
:::::::
realloc

::
is

::::::::
successful,

:::
the

::::
initial

::::
part

::
of

::
the

::::
new

::::::
storage

::::::
instance

::::::::
represents

:::::
objects

::::
with

::::
same

:::::
value

:::
and

::::::
effective

::::
type

::
as

:::
the

::::
initial

::::
part

::
of

::
the

:::
old

::::::
storage

:::::::
instance,

:
if
::::

any.
::::::::::
Nevertheless,

:::
the

::::
new

:::::
storage

:::::::
instance

:::
has

::
to

::
be

::::::::
considered

::
to

::
be

::::::
different

::::
from

:::
the

::
old

::::
one:

—
::::
Even

:
if
:::
both

::::::
storage

:::::::
instances

:::
have

:::
the

::::
same

::::::
address,

::
all

::::::
pointers

::
to
:::
the

::
old

::::::
storage

::::::
instance

:::::
(stored

:::::
within

::
or

::::::
outside

::
the

::::::
storage

:::::::
instance)

::
are

:::::
invalid

::::::
because

::::
that

:::::
storage

::::::
instance

:::::
ceases

::
to

::::
exist.

:

—
:::::
Copies

::
of

:::::
objects

::
in

::
the

::::
new

:::::
storage

:::::::
instance

:::
that

:::
have

::::::
hidden

::::
state

:::
and

::::
need

:::::
explicit

::::::::::
initialization

::::
(such

::
as

::::::
variable

:::::::
argument

:::
lists,

::::::
atomic

:::::
objects,

:::::::
mutexes,

::
or

:::::::
condition

:::::::
variables)

:::
are

::
in

::
an

:::::::::
unspecified

::::
state.

—
:::::::
Resources

:::::::
reserved

::
for

:::
the

::::::
original

:::::
objects

::
in

:::
the

:::
old

:::::
storage

:::::::
instance

:::
that

::::
have

:::::
hidden

::::
state

:::
and

::::
need

:::::::::
destruction

::::
(such

::
as

::::::
variable

:::::::
argument

::::
lists,

::::::
mutexes

::
or

:::::::
condition

:::::::
variables)

::::
may

::
be

:::::::::
squandered.

:

7.22.4 Communication with the environment
7.22.4.1 The abort function
Synopsis

1 #include <stdlib.h>
_Noreturn void abort(void);

Description
2 The abort function causes abnormal program termination to occur, unless the signal SIGABRT

is being caught and the signal handler does not return. Whether open streams with unwritten
buffered data are flushed, open streams are closed, or temporary files are removed is implementa-
tion-defined. An implementation-defined form of the status unsuccessful termination is returned to
the host environment by means of the function call raise(SIGABRT).

Returns
3 The abort function does not return to its caller.

7.22.4.2 The atexit function
Synopsis

1

302 Library § 7.22.4.2

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

Annex J
(informative)

Portability issues

1 This annex collects some information about portability that appears in this document.

J.1 Unspecified behavior
1 The following are unspecified:

— The manner and timing of static initialization (5.1.2).

— The termination status returned to the hosted environment if the return type of main is not
compatible with int (5.1.2.2.3).

— The values of objects that are neither lock-free atomic objects nor of type
volatile sig_atomic_t and the state of the floating-point environment, when the
processing of the abstract machine is interrupted by receipt of a signal (5.1.2.3).

— The behavior of the display device if a printing character is written when the active position is
at the final position of a line (5.2.2).

— The behavior of the display device if a backspace character is written when the active position
is at the initial position of a line (5.2.2).

— The behavior of the display device if a horizontal tab character is written when the active
position is at or past the last defined horizontal tabulation position (5.2.2).

— The behavior of the display device if a vertical tab character is written when the active position
is at or past the last defined vertical tabulation position (5.2.2).

— How an extended source character that does not correspond to a universal character name
counts toward the significant initial characters in an external identifier (5.2.4.1).

— Many aspects of the representations of types (6.2.6).

— The
::::::
relative

::::::
order

::
of

::::
any

::::
two

:::::::
storage

::::::::
instances

:::
in

:::
the

:::::::
address

::::::
space

:::::::
(6.2.6.1).

:

—
:::
The

:
value of padding bytes when storing values in structures or unions (6.2.6.1).

— The values of bytes that correspond to union members other than the one last stored into
(6.2.6.1).

— The representation used when storing a value in an object that has more than one object
representation for that value (6.2.6.1).

— The values of any padding bits in integer representations (6.2.6.2).

— Whether certain operators can generate negative zeros and whether a negative zero becomes a
normal zero when stored in an object (6.2.6.2).

— Whether two string literals result in distinct arrays (6.4.5).

— The order in which subexpressions are evaluated and the order in which side effects take place,
except as specified for the function-call (), &&, ||, ?:, and comma operators (6.5).

— The order in which the function designator, arguments, and subexpressions within the argu-
ments are evaluated in a function call (6.5.2.2).

— The order of side effects among compound literal initialization list expressions (6.5.2.5).

— The order in which the operands of an assignment operator are evaluated (6.5.16).

— The alignment of the addressable storage unit allocated to hold a bit-field (6.7.2.1).

§ J.1 Portability issues 469

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

— Whether a call to an inline function uses the inline definition or the external definition of the
function (6.7.4).

— Whether or not a size expression is evaluated when it is part of the operand of a sizeof
operator and changing the value of the size expression would not affect the result of the
operator (6.7.6.2).

— The order in which any side effects occur among the initialization list expressions in an
initializer (6.7.9).

— The layout of storage for function parameters (6.9.1). When a fully expanded macro replace-
ment list contains a function-like macro name as its last preprocessing token and the next
preprocessing token from the source file is a (, and the fully expanded replacement of that
macro ends with the name of the first macro and the next preprocessing token from the source
file is again a (, whether that is considered a nested replacement (6.10.3).

— The order in which # and ## operations are evaluated during macro substitution (6.10.3.2,
6.10.3.3).

— The line number of a preprocessing token, in particular __LINE__, that spans multiple physical
lines (6.10.4).

— The line number of a preprocessing directive that spans multiple physical lines (6.10.4).

— The line number of a macro invocation that spans multiple physical or logical lines (6.10.4).

— The line number following a directive of the form #line __LINE__ new-line (6.10.4).

— The state of the floating-point status flags when execution passes from a part of the program
translated with FENV_ACCESS "off" to a part translated with FENV_ACCESS "on" (7.6.1).

— The order in which feraiseexcept raises floating-point exceptions, except as stated in F.8.6
(7.6.4.3).

— Whether math_errhandling is a macro or an identifier with external linkage (7.12).

— The results of the frexp functions when the specified value is not a floating-point number
(7.12.6.4).

— The numeric result of the ilogb functions when the correct value is outside the range of the
return type (7.12.6.5, F.10.3.5).

— The result of rounding when the value is out of range (7.12.9.5, 7.12.9.7, F.10.6.5).

— The value stored by the remquo functions in the object pointed to by quo when y is zero
(7.12.10.3).

— Whether a comparison macro argument that is represented in a format wider than its semantic
type is converted to the semantic type (7.12.17).

— Whether setjmp is a macro or an identifier with external linkage (7.13).

— Whether va_copy and va_end are macros or identifiers with external linkage (7.16.1).

— The hexadecimal digit before the decimal point when a non-normalized floating-point number
is printed with an a or A conversion specifier (7.21.6.1, 7.29.2.1).

— The value of the file position indicator after a successful call to the ungetc function for a text
stream, or the ungetwc function for any stream, until all pushed-back characters are read or
discarded (7.21.7.10, 7.29.3.10).

— The details of the value stored by the fgetpos function (7.21.9.1).

— The details of the value returned by the ftell function for a text stream (7.21.9.4).

470 Portability issues § J.1

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

— Whether the strtod, strtof, strtold, wcstod, wcstof, and wcstold functions convert a
minus-signed sequence to a negative number directly or by negating the value resulting from
converting the corresponding unsigned sequence (7.22.1.5, 7.29.4.1.1).

— The order and contiguity of storage allocated by successive calls to the calloc, malloc,
realloc, and aligned_alloc functions (??). The amount of storage allocated by a successful

:
If
::
a call to the calloc, malloc, realloc, or aligned_alloc function when

:::::::::
requesting

:
0 bytes

was requested (??
:::
fails

:::
or

:::::::
returns

:
a
:::::::
storage

::::::::
instance

::
of

::::
size

::::
zero

::::::
(7.22.3).

— Whether a call to the atexit function that does not happen before the exit function is called
will succeed (7.22.4.2).

— Whether a call to the at_quick_exit function that does not happen before the quick_exit
function is called will succeed (7.22.4.3).

— Which of two elements that compare as equal is matched by the bsearch function (7.22.5.1).

— The order of two elements that compare as equal in an array sorted by the qsort function
(7.22.5.2).

— The order in which destructors are invoked by thrd_exit (7.26.5.5).

— Whether calling tss_delete on a key while another thread is executing destructors affects the
number of invocations of the destructors associated with the key on that thread (7.26.6.2).

— The encoding of the calendar time returned by the time function (7.27.2.4).

— The characters stored by the strftime or wcsftime function if any of the time values being
converted is outside the normal range (7.27.3.5, 7.29.5.1).

— Whether an encoding error occurs if a wchar_t value that does not correspond to a member of
the extended character set appears in the format string for a function in 7.29.2 or 7.29.5 and the
specified semantics do not require that value to be processed by wcrtomb (7.29.1).

— The conversion state after an encoding error occurs (7.29.6.3.2, 7.29.6.3.3, 7.29.6.4.1, 7.29.6.4.2,

— The resulting value when the "invalid" floating-point exception is raised during IEC 60559
floating to integer conversion (F.4).

— Whether conversion of non-integer IEC 60559 floating values to integer raises the "inexact"
floating-point exception (F.4).

— Whether or when library functions in <math.h> raise the "inexact" floating-point exception in
an IEC 60559 conformant implementation (F.10).

— Whether or when library functions in <math.h> raise an undeserved "underflow" floating-
point exception in an IEC 60559 conformant implementation (F.10).

— The exponent value stored by frexp for a NaN or infinity (F.10.3.4).

— The numeric result returned by the lrint, llrint, lround, and llround functions if the
rounded value is outside the range of the return type (F.10.6.5, F.10.6.7).

— The sign of one part of the complex result of several math functions for certain special cases
in IEC 60559 compatible implementations (G.6.1.1, G.6.2.2, G.6.2.3, G.6.2.4, G.6.2.5, G.6.2.6,
G.6.3.1, G.6.4.2).

§ J.1 Portability issues 471

ISO/IEC 9899:202x (E) working draft — June 7, 2019 C201906..storage N2388

— The number of characters or wide characters transmitted by a formatted output function (or
written to an array, or that would have been written to an array) is greater than INT_MAX
(7.21.6.1, 7.29.2.1).

— The number of input items assigned by a formatted input function is greater than INT_MAX
(7.21.6.2, 7.29.2.2).

— The result of a conversion by one of the formatted input functions cannot be represented in
the corresponding object, or the receiving object does not have an appropriate type (7.21.6.2,
7.29.2.2).

— A c, s, or [conversion specifier is encountered by one of the formatted input functions, and
the array pointed to by the corresponding argument is not large enough to accept the input
sequence (and a null terminator if the conversion specifier is s or [) (7.21.6.2, 7.29.2.2).

— A c, s, or [conversion specifier with an l qualifier is encountered by one of the formatted
input functions, but the input is not a valid multibyte character sequence that begins in the
initial shift state (7.21.6.2, 7.29.2.2).

— The input item for a %p conversion by one of the formatted input functions is not a value
converted earlier during the same program execution (7.21.6.2, 7.29.2.2).

— The vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf,
vfwscanf, vswprintf, vswscanf, vwprintf, or vwscanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in an invocation of va_end)
after the function returns (7.21.6.8, 7.21.6.9, 7.21.6.10, 7.21.6.11, 7.21.6.12, 7.21.6.13, 7.21.6.14,
7.29.2.5, 7.29.2.6, 7.29.2.7, 7.29.2.8, 7.29.2.9, 7.29.2.10).

— The contents of the array supplied in a call to the fgets or fgetws function are used after a
read error occurred (7.21.7.2, 7.29.3.2).

— The file position indicator for a binary stream is used after a call to the ungetc function where
its value was zero before the call (7.21.7.10).

— The file position indicator for a stream is used after an error occurred during a call to the
fread or fwrite function (7.21.8.1, 7.21.8.2).

— A partial element read by a call to the fread function is used (7.21.8.1).

— The fseek function is called for a text stream with a nonzero offset and either the offset was
not returned by a previous successful call to the ftell function on a stream associated with
the same file or whence is not SEEK_SET (7.21.9.2).

— The fsetpos function is called to set a position that was not returned by a previous successful
call to the fgetpos function on a stream associated with the same file (7.21.9.3).

— A non-null pointer returned by a call to the calloc, malloc, realloc, or aligned_alloc
function with a zero requested size is used to access an object (7.22.3).

— The value of a pointer that refers to space
:
a
:::::::
storage

::::::::
instance deallocated by a call to the free

or realloc function is used (7.22.3).

— The pointer argument to the free or realloc function does not match a pointer earlier
returned by a memory

::::::
storage management function, or the space

:::::::
storage

:::::::
instance

:
has been

deallocated by a call to free or realloc (7.22.3.3, 7.22.3.5).

— The value of the object allocated by the malloc function is used (7.22.3.4).

— The values of any bytes in a new object allocated by the realloc function beyond the size of
the old object are used (7.22.3.5).

— The program calls the exit or quick_exit function more than once, or calls both functions
(7.22.4.4, 7.22.4.7).

480 Portability issues § J.2

N2388 C201906..storage working draft — June 7, 2019 ISO/IEC 9899:202x (E)

— The effect if a file with the new name exists prior to a call to the rename function (7.21.4.2).

— Whether an open temporary file is removed upon abnormal program termination (7.21.4.3).

— Which changes of mode are permitted (if any), and under what circumstances (7.21.5.4).

— The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence
printed for a NaN (7.21.6.1, 7.29.2.1).

— The output for %p conversion in the fprintf or fwprintf function (7.21.6.1, 7.29.2.1).

— The interpretation of a- character that is neither the first nor the last character, nor the second
where a ^ character is the first, in the scanlist for %[conversion in the fscanf or fwscanf
function (7.21.6.2, 7.29.2.1).

— The set of sequences matched by a %p conversion and the interpretation of the corresponding
input item in the fscanf or fwscanf function (7.21.6.2, 7.29.2.2).

— The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on
failure (7.21.9.1, 7.21.9.3, 7.21.9.4).

— The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.22.1.5,
7.29.4.1.1).

— Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets
errno to ERANGE when underflow occurs (7.22.1.5, 7.29.4.1.1).

— The meaning of any d-char or d-wchar sequence in a string representing a NaN that is con-
verted by the strtod32, strtod64, strtod128, wcstod32, wcstod64, or wcstod128 function
(7.22.1.6, 7.29.4.1.2).

— Whether or not the strtod32, strtod64, strtod128, wcstod32, wcstod64, or wcstod128
function sets errno to ERANGE when underflow occurs (7.22.1.6, 7.29.4.1.2).

— Whether the calloc, malloc, realloc, and aligned_alloc functions return a null pointer or
a pointer to an allocated object

:
a
:::::::
storage

::::::::
instance

:
when the size requested is zero (7.22.3).

— Whether open streams with unwritten buffered data are flushed, open streams are closed, or
temporary files are removed when the abort or _Exit function is called (7.22.4.1, 7.22.4.5).

— The termination status returned to the host environment by the abort, exit, _Exit, or
quick_exit function (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7).

— The value returned by the system function when its argument is not a null pointer (7.22.4.8).

— The range and precision of times representable in clock_t and time_t (7.27).

— The local time zone and Daylight Saving Time (7.27.1).

— The era for the clock function (7.27.2.1).

— The TIME_UTC epoch (7.27.2.5).

— The replacement string for the %Z specifier to the strftime, and wcsftime functions in the
"C" locale (7.27.3.5, 7.29.5.1).

— Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559
conformant implementation, unless explicitly specified otherwise (F.10).

§ J.3.12 Portability issues 487

	Introduction
	Fix terminology
	Suggested changes
	Text additions
	Text modifications

