
ISO/IEC JTC 1/SC 22/WG14

March 30, 2019

N 2361

v 1
Out-of-band bit for exceptional return and errno replacement
interface proposal for future C

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

We propose a mechanism for out-of-band return of exceptional conditions that are designed, among other
things, to replace errno and similar thread-local mechanisms for error return, and to allow C libraries
and other programming languages to implement value based exception return on top of it. Our method
is designed to be conservative: there is no need of ABI replacement for platforms, only amendment, and
existing executables and compiled libraries remain valid.

1. INTRODUCTION
Recently, WG14 and WG21 have seen several papers that propose improvements to C’s and
C++’s error handling capacities. The main motivations for these seem twofold:

Value based exceptions. After the failure of the type based dynamic exception model [Gre-
gor(2010)], modern programming languages seek means to express simple value based prop-
agation of error (or exceptional) information and conditions [Sutter(2018)]. A new mech-
anism is sought that should be efficient, independent of dynamic choices and in line with
modern optimization techniques [Douglas(2018a)] [Renwick et al.(2019)Renwick, Spink, and
Franke].

C library error handling. The C error handling mechanisms through errno and the floating
point state is at a dead end. First, for a typical function in the <math.h> header the correct
handling of possible error conditions via thread local state may have an overhead that is
of the same order of magnitude as the “useful” part of the function itself. Second, since the
error state is handled globally, calls to such functions cannot be well integrated into their
caller.

For C, we build on two preceding papers, [Navia(2018)] and [Douglas(2018b)], by com-
plementing their ideas to provide a “C only” backwards compatible interface. Partly, their
proposed new error condition handling that extends existing ABI, require the rewrite of
parts of the C library, change error code conventions, or introduce additions to C’s type
system. In particular, both do not seem directly suitable for a seamless migration, because
they either require to implement a whole new series of library functions, or because they
cannot necessarily combine legacy user code or legacy C libraries with code and libraries
that would adhere to the new ABI.
Our intent is provide an interface that is

— backward compatible,
— efficient,
—minimal,
— straight forward to implement, and
—extensible.

The interface is constructed such that combinations of previously compiled user code and
libraries should work as shown in Table I. Note that the “ link error ” case only occurs if
the caller uses an inconsistent declaration of the callee that includes an annotation with an
out-of-band attribute, and that the caller has not been compiled with the same attributes
as the callee.

The low-level techniques that have been proposed in previous papers for such new error
strategies are based on transferring out-of-band information from the called function to the

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N2361:2 Jens Gustedt

Table I. Combinations of binaries with and without out-of-band support

callee without oob callee uses oob
caller without oob unchanged callee optimized

caller uses oob link error both optimized

caller. This is information that complements the “normal” return value of a function, such
that the caller may detect an exceptional condition, easily, but that on the other hand does
not change the global state, such that it can easily be ignored and such that it does not
inhibit optimization.
Techniques to do so are usually based on amending a platform ABI, such that a previously

unused hardware register or flag is used for the transfer of information from callee to caller.
The idea of the present paper is to use the same type of mechanism, so we don’t think that
is necessary to describe it in all detail, here. In Section 4 we will though present some ideas
for implementations and also about a generic extension strategy for platform ABI. We only
use this mechanism ad minima:

Note. Out-of-band error handling transfers one additional bit, the out-of-band bit, from the
callee to the caller. A function call encountered an exceptional condition, if and only if this
bit is 1 when returning from the call.

In fact, the use of a reserved hardware flag for this interface isn’t even necessary. The whole
approach can also be easily described via a hidden extra parameter of a special “version” of
a function with out-of-band bit support. The specification is willingly lose to allow enough
slack for efficient implementations and platform ABI.

This is achieved by describing the out-of-band bit extension with four different calling
conventions and four different return conventions. The former can be used by callers of
a function to indicate the level of details that it needs from the function and permits
implementations more (or less) agressive optimizations of the calling context. The calling
conventions are oob_direct, oob_plain, oob_ignore and oob_capture. They are designed
such that they can easily be integrated into typical C library implementations. For example
a typical occurrence of an error handling such as

errno = EOVERFLOW;
return -1;

may simply be replaced by

oob_return_minus1(EOVERFLOW);

and an annotation of the function with the attribute [[oob_return_error]].
The specific return convention allows the implementation of the function to give details

of the channels that it intends to use for the return of out-of-band information. The return
conventions are oob_default, oob_return, oob_return_never and oob_return_error. In
addition, there are some specialized conventions that are derived from oob_return_error,
such as oob_return_minus1 and oob_return_neg.
Table II shows the effects that the different combinations of conventions may have.

Observe that side effects only occur for combinations of oob_direct, oob_plain and
oob_return_error.
Our idea is to specify the behavior of out-of-band augmented functions by the new at-

tributes feature that C most likely will adopt, similar to the ones in C++. Standard at-
tributes must be such that compiling a code that is conforming in presence of the attribute
remains conforming when removing the attribute. Our intent with this proposal is to respect
that requirement.

Out-of-band bit for exceptional return and errno replacement N2361:3

Table II. Behavior and side effects of combinations of calling conventions and return conventions. Here, return
indicates conventional return, bit additional return of the out-of-band bit, undefined that a code path has
undefined behavior, errno and fp state indicate that these may be modified.

oob_default oob_return oob_return_never oob_return_error
oob_direct return return undefined return, errno, fp state
oob_plain return return return return, errno, fp state
oob_ignore return return return return
oob_capture return return, bit return, bit return, bit

Examples:

[[oob_return_error]] long strtol(char const[static 1], char**, int);
[[oob_return_error]] int snprintf(char*, size_t , char const[static 1], ...);
[[oob_return]] void tss_delete(tss_t);

The attribute(s) should correspond to the special return convention that the function uses.
E.g, the first two are specified to return errors in errno, so the oob_return_error convention
is chosen. For both functions a return of an out-of-band bit can be sufficient to reconstruct
all necessary failure information in the caller: strtol has only one failure mode (so it must
be occurrence of a domain error) and snprintf returns a negative value on failure, so that
value can be chosen to be the negative of the error code that otherwise would be returned
in errno.
The function tss_delete is a special case for which the C standard does not foresee

failure, but corresponding OS features such as pthread_key_delete do indeed have failure
conditions. Here, an annotation with oob_return could indicate that errors can be captured,
nonetheless.

Optimization opportunities
We distinguish several closely related properties of functions (or generally code snippets)
that have a direct influence on the optimization opportunities at their call site:

— unsequenced: A function is unsequenced if a call can be effected as soon as all the ar-
guments are known. As a consequence, such a function can only read unmutable state
such as const objects. There can only be very limited side effects, e.g if stores in different
calls are idempotent (writing the same value in an exclusive object) or interchangeable
(printing the same string or performing a read-modify-write operation that discards the
value that is read). Such side effects must not depend on the input and must not disclose
information (such as addresses) to unexpected parts of the program execution. Such a call
can be subject to common subexpression elimination, local memoization, lazy evaluation
or parallelization.

— side effect free: The function only uses its parameters to determine its result and reads
other objects only because they are global or because pointer arguments point to them,
but it will never change them. It cannot do IO and cannot create or delete objects via
malloc, free and similar functions.

— state independent: The result of such function can be deduced from its parameters alone.
Besides its return value, a state independent function could possibly write state without
reading it, for example write a value to a stream or store an error code in errno.

— referentially transparent: A function has this property if it is side effect free and state
independent. Such a function reads no state other than its parameters and leaves no
trace in the program state other than its return value, thus as a consequence it is also
unsequenced.

N2361:4 Jens Gustedt

—A call of such a function that receives only compile time constant arguments can be
evaluated at compile time.

— Such a call can be subject to common subexpression elimination, global memoization,
lazy evaluation, parallelization and vectorization.

Note. In some programming communities the term pure is used for either side effect free
(e.g by Fortran, or a gcc attribute) or for referentially transparent (functional programming,
Keil compiler), and so it does not seem appropriate to use this term, here.

Since the property of being unsequenced is relatively difficult to assert, many frame-
works only deal with the easier to handle properties of being side effect free (gcc attribute
[[gnu::pure]]) or referentially transparent (gcc attribute [[gnu::const]]). To determine
if a particular combination of our conventions has one of these two properties it is sufficent
to see if the function executed with the oob_ignore convention has the sought property.
For example, most C library functions specified by <math.h> are state independent, but

because of their possible use of errno or the floating-point state many of them have non-
commuting side effects and thus are also not unsequenced. When implemented with out-of-
band return and executed with oob_ignore or oob_capture they become in fact side effect
free and thus also referentially transparent.
In most cases an error convention can be applied such that when used with oob_capture

still all necessary failure information is available to the caller.

2. CALLING CONVENTIONS
In the following let RETURN be one of the four return conventions and let us suppose that
we have a declaration:

[[__RETURN__]] R toto(A a, B b);

where R, A and B are arbitrary complete types, and a corresponding definition

[[__RETURN__]] R toto(A a, B b){
...

}

This here is just meant as an example to illustrate the concepts, this whole mechanism
should also work if R or the parameter list (or both) are void.
Such a declaration is semantically equivalent to the declaration of several functions with

names that are not accessibly to the user code:

extern R toto ∶∶ direct(A a, B b);
extern R toto ∶∶plain(A a, B b);
extern R toto ∶∶ ignore(A a, B b);
extern R toto ∶∶ capture(bool flap[restrict static 1], A a, B b);

These four functions, or equivalent constructs are instantiated in the TU that sees the
definition. To ease the implementation of the features, the corresponding [[__RETURN__]]
attribute must be applied to all declarations of the function and may not be combined with
the storage class specifiers static, nor with a function specifier noreturn.
Here, toto ∶∶direct is a function that will be called when toto or its address is used in a

conventional function call, whereas toto ∶∶plain is a function that has all the effects that a
normal definition of toto would have.
The plain, ignore and capture functions are not callable directly, only through corre-

sponding constructs, see below. As said, they don’t have names that would be visible to
the user code, and an implementation can in effect decide to realize these features by any
means they see fit, as long as it preserves the required side effects.

Out-of-band bit for exceptional return and errno replacement N2361:5

In particular, the additional flap parameter for toto ∶∶capture only serves as a descrip-
tion of semantic effects of the feature. The flap[0] object is supposed to be a “write-only”
parameter that is used to transfer the one and single out-of-band bit, and who’s address
is never considered to have escaped the calling context. Implementations are strongly en-
couraged to find other means to transfer that bit from the call to the callee, implementing
it as additional parameter should only be a last resort on platforms that cannot use any
hardware register or flag for this purpose.

2.1. direct and plain call
The first mode for calling an out-of-band function is a direct call, that is the function is
called as usual. The call

toto(a0, b0) // equivalent
oob_direct(toto , a0, b0)

by using the function name toto or a function pointer to toto, is sematically equivalent to

toto ∶∶ direct(a0, b0)

During such an execution the special out-of-band return constructs, see below, may kick
in and perform certain tasks, see Table III. The direct calling convention should also apply
to calls that are inlined, either because they where declared with inline and the definition
is visible in a header, or because the compiler chooses so in the compilation unit where the
function is defined.

Table III. Return effects for direct and plain calls with return value of type R. The analogous constructs for void
functions omit the return value. For a description of oob_error_set see Section 3.3.

out-of-band construct conventional C construct
return val return val
oob_return(val) return val

oob_return_never(val) direct: undefined
plain: return val

oob_return_error(err, ...) do {
oob_error_set(err);
return (__VA_ARGS__);

} while(false)

Observe that the first three conventions have no additional side effects.
Similarly, the plain calling convention

oob_plain(toto , a0, b0)

is sematically equivalent to

toto ∶∶plain(a0, b0)

Compared to direct, plain only changes the behavior of oob_return_never, which then is
defined to return the value.
For both modes, direct and plain, oob_return_error may have the effect of setting

errno or to raise the floating point exception flag. For a discussion about the values and the
case analysis that is performed by oob_error_set see the discussion for oob_return_error,
below. This can be used for two purposes by the code of toto: to return an error condition
or raise a floating point exception flag (if err is non-zero) or by clearing errno and possibly

N2361:6 Jens Gustedt

the floating-point environment from all accidental values that may have occurred during its
execution.

Optimization opportunities
For the function toto ∶∶plain to be referentially transparent, is necessary that the function
definition only uses the first three return conventions, since otherwise it could have an effect
on errno or the floating point exception flag. If that is the case, it follows that toto ∶∶direct
is referentially transparent, too.

2.2. Special calling conventions
The remaining calling conventions change the semantics of the called function such that
they avoid the side effects of changing errno or the floating point exception flag.

2.2.1. ignoring the out-of-band bit and error conditions. If a user of a function has enough
knowledge about a call they might deduce that the error path will never be visited, that
the error conditions can safely be ignored, or that the usual return value provides enough
information to deal with errors. In such a situation a call as in

oob_ignore(toto , a0, b0);

is equivalent to

toto ∶∶ ignore(a0, b0);

The effect is that all occurrences of special out-of-band return constructs simply result
in a conventional return of the value. Only the derived constructs oob_return_minus1 and
oob_return_neg still allow the propagation of error information, a -1 for the former and
the negated error code for the latter.

Optimization opportunities
The function toto ∶∶ignore is referentially transparent (or unsequenced), if the only possible
side effects of toto ∶∶plain are via an out-of-band return that changes errno or the floating
point state.
This can be the case for most functions in <math.h>, so calls to these functions with

oob_ignore could be optimized by common subexpression evaluation.

2.2.2. capturing the out-of-band bit. Calling a function in capture mode is semantically the
most complex. In the following we use two objects, f and ret, to receive the out-of-band
bit and the normal return value, respectively. These two objects only have to meet minimal
requirements; they must be assignable lvalues and of a compatible type. The latter means
that f has to be assignable from integers, that is any integer or floating type IT would do.1
For ret this means that it must have a type RR that is assignment compatible from R.
The code snippet

register IT f; // Need not to have an address
register RR ret; // Need not to have an address
ret = oob_capture(f, toto , a0, b0);

is equivalent to the following:

register IT f; // Need not to have an address
register RR ret; // Need not to have an address
{

1Pointers are not allowed because they would need conversion.

Out-of-band bit for exceptional return and errno replacement N2361:7

bool flag; // Cannot alias , cannot escape
ret = toto ∶∶ capture (&flag , a, b);
f = flag;

}

If R is void, the obvious simplifications apply, that is there is no need for ret and thus no
assignment to it.

Table IV. Return effects for capture calls.

out-of-band construct conventional C construct
return val do { flap[0] = 0; return val; } while(false)
oob_return(val) do { flap[0] = 1; return val; } while(false)

oob_return_never(val) do { flap[0] = 1; return val; } while(false)

oob_return_error(err, ...) do { flap[0] = err; return (__VA_ARGS__); } while(false)

Optimization opportunities
The function toto ∶∶capture itself is not referentially transparent, because it uses the pa-
rameter flap to store the out-of-band bit, and thus it is not unsequenced, either. But the
usage as described above (within the replacement block) is in fact referentially transparent,
for the same cases as for toto ∶∶ignore. If the only possible side effects of toto ∶∶plain are
via oob_errror, the only values that are propagated outside the block are ret and f.
This is the case for most functions in <math.h>, so calls to these functions with oob_capture

could be optimized by common subexpression evaluation. In addition to the usual return
value, such common subexpression evaluation may also take a possible out-of-band bit into
account.
This mechanism also allows to build more complex error or exception handling on top, but

which remains efficient and leads to referentially transparent pseudo-functions. For example,
the oob_return_error feature can be used to reinterpret the normal return value of type R
as an error code or value exception if the out-of-band bit is set. Other efficient strategies
could be to have a combined return type

typedef union { rettype retval; errtype errval; } R;

that holds a “normal” return value retval if the out-of-band is not set, and and error val
errval otherwise.

2.3. Call convention dependent switching
Functions that implement the out-of-band calling conventions might themselves distinguish
their action according to the calling convention they were called themselves. There is an
enumeration type

enum { oob_direct , oob_plain , oob_ignore , oob_capture , };

and a variable as if defined at the beginning of each out-of-band function

register int const oob_mode = value;

In the following example we assume that we have another out-of-band function
my_other_func that should be called with the same convention as the current function.

N2361:8 Jens Gustedt

In the case that an out-of-band bit is captured, the error and the return code are just
passed through to the caller.

register R ret;
register bool flag = false;
switch (oob_mode) {

default: ret = oob_direct(my_other_func , abc); break;
case oob_plain: ret = oob_plain(my_other_func , abc); break;
case oob_ignore: ret = oob_ignore(my_other_func , abc); break;
case oob_capture: ret = oob_capture(flag , my_other_func , abc);

}
if (flag) oob_return(ret); // pass through
else return 5 + ret;

Depending on the implementation, in the compilation unit of a particular calling conven-
tion such a switch can then compile to just the same code as the corresponding call to
my_other_func and an addition of 5.

3. SPECIAL RETURN CONVENTIONS
The usual return from an out-of-band function should always be a normal return as from
any other function with the given prototype. Out-of-band special return constructs should
only be used in code path that are “rare”, “special”, “exceptional”, “erroneous” or similar.
The prototypes of functions that use these special return conventions must be annotated
with a corresponding attribute such that callers may know what error convention to expect.
If several return conventions can be used, all of them must appear in an attribute. E.g,

a function that may have undefined behavior for some error paths, and set errno or the
floating-point state in others could be annotated as:

[[oob_return_never , oob_return_error]] double log(double);

—For functions that are not declared with oob_return_never, direct and plain mode are
equivalent. Implementations may chose to realize them as one function, or to simplify the
oob_direct and oob_plain features at the calling side.

—Functions that only use any combination of [[oob_return]] and [[oob_return_never]]
but not [[oob_return_error]] (or one of the derived return conventions) must neither
touch errno nor the floating-point state. Thereby a caller may deduce that none of these
have changed across calls to the function.

—The [[oob_return_error]] convention implies [[oob_return]].

All the following special features may set the out-of-band bit when the function is exe-
cuted under capture conditions and ignore the bit when under ignore. Behavior of these
constructs when they are encountered during direct execution varies according to the con-
struct: it may just set the out-of-band bit, set errno to some value or be undefined.
As above, R represents the return type of the function in which the construct is found.

Some of the constructs work as if they were declared as generic functions with the given
prototype. In particular, these are as if declared void and noreturn. Other than a normal
return statement, they always need parenthesis, even if R is void.

3.1. oob_return: return value and eventually set the out-of-band bit
This construct suggests to the compiler that the path to the place it is used is a rarely taken
and that optimization should prefer other paths.
The only observable change from normal return is the out-of-band bit that is set under

capture, but not when called via any of the other modes.

Synopsis:.

Out-of-band bit for exceptional return and errno replacement N2361:9

noreturn void oob_return(R val);

val is returned in all modes.

Synopsis:.

noreturn void oob_return(void);

This variant is for void functions and returns to the caller as a usual return.

3.2. oob_return_never: optimize out or return value and set the out-of-band bit
This construct is intended for the implementation of functions that impose consistency
requirements to the caller of a function. Many functions in the C library in fact impose that
certain argument values are not permitted (e.g null pointers, or 0 for log), or have to be
in a certain range. This return convention allows to implement checks for such conditions,
but that can be effectively eliminated for “normal” execution. For example, a test as the
following

// Check eliminated in direct mode.
if (!x) oob_return_never (42);

can be completely skipped in direct mode. Still it is there to document the requirement
and to help to debug erroneous calls through capture mode.
For plain, ignore and capture execution, this construct is equivalent to a simple return

statement with the corresponding value, with the addition for capture that the out-of-band
bit is set. The latter is intended to facilitate debugging of exceptional conditions.
For direct execution, this construct suggest that the path leading to it is never taken. If

taken anyhow, the behavior is undefined.

Synopsis:.

noreturn void oob_return_never(R val);

val is returned in all modes that are not direct. When direct mode reaches this
construct the behavior is undefined.

Synopsis:.

noreturn void oob_return_never(void);

This variant is for void functions and for plain, ignore and capture returns to the
caller as a usual return. When direct mode reaches this construct the behavior is
undefined.

Optimization opportunities
If excuted directly, code paths that end in oob_return_never are undefined. Therefore,
optimization can completely eliminate such a path.
In the latter case, an optimizer can be much more agressive than for plain mode and cut

branches in the function that are never visited. Thereby, it may produce binary code that
is more efficient than without that knowledge. Table V lists the functions in the C library
that could profit from this feature.

N2361:10 Jens Gustedt

Table V. C library functions that could use oob_return_never

atof
atoi
call_once
clearerr

cnd_destroy
free
mtx_destroy
perror

qsort
rewind
setbuf
srand

thrd_yield
tss_delete

3.3. oob_return_error: set errno or raise a floating point exception
This construct is intended for the implementation of functions that follow the error
convention of the C library. Depending on the argument and possibly on the value of
math_errhandling, these functions may set errno or raise a floating point exception to
return error conditions.
The functionality in direct or plain mode is as if there is a macro

#define oob_error_set (...) \
do { \

int err = (__VA_ARGS__); \
if (err < 0) { \

if (math_errhandling & MATH_ERRNO) \
oob_code_errno(err); \

if (math_errhandling & MATH_ERREXCEPT) \
oob_code_fexcept(err); \

} else { \
errno = err; \

} \
} while(false)

If R is void, in direct or plain mode oob_return_error(ERR) is as if replaced by a call
to:

#define oob_return_error_void (...) \
do { \

oob_error_set(__VA_ARGS__); \
return; \

} while(false)

Otherwise, in direct or plain mode oob_return_error(ERR, ...) is as if replaced by a
call to:

#define oob_return_error_value(ERR , ...) \
do { \

oob_error_set(ERR); \
return (__VA_ARGS__); \

} while(false)

All these constructs are required to be implemented as if they were macros. This ensures that
the local state of the floating-point environment of the function in which these constructs
occur is used. The (__VA_ARGS__) conventions ensure that compound literals including
commas can be passed as arguments.
The enumeration oob_code can be used to deal with floating-point errors. It has has

negative symbolic values and functions oob_code_fexcept and oob_code_errno with side
effects as given in Table VI.
For direct and plain execution, side effects are performed according to ERR. The return

value then is (__VA_ARGS__) or nothing if R is void.
A caller can avoid the side effects, by calling a function that follows this return convention

under ignore or capture. Here, errno and the floating-point exceptions remain untouched.

Out-of-band bit for exceptional return and errno replacement N2361:11

Table VI. translation of floating-point exception modes and effects

fp exception oob_code err oob_code_fexcept(err) oob_code_errno(err)
err ≥ 0 untouched errno=err

none oob_code_clear feclearexcept(FE_ALL_EXCEPT) errno=0
oob_code_transmit untouched untouched

inexact oob_code_inexact feraiseexcept(FE_INEXACT) untouched
divide-by-zero oob_code_divbyzero feraiseexcept(FE_DIVBYZERO) errno=ERANGE
invalid oob_code_invalid feraiseexcept(FE_INVALID) errno=EDOM
overflow oob_code_overflow feraiseexcept(FE_OVERFLOW) errno=ERANGE
underflow oob_code_underflow feraiseexcept(FE_UNDERFLOW) errno=ERANGE

In addition, under capture the out-of-band bit is assigned with ERR, such that the caller
may check if an error occurred and interpret the return value accordingly.
If R is void, in capture mode oob_return_error(ERR) is as if replaced by a call to:

#define oob_return_bit_void (...) \
do { \

if (__VA_ARGS__) oob_return (); \
else return; \

} while(false)

Otherwise, in capture mode oob_return_error(ERR, ...) is as if replaced by a call to:

#define oob_return_bit_value(ERR , ...) \
do { \

R ret = (__VA_ARGS__); \
if (ERR) oob_return(ret); \
else return ret; \

} while(false)

Under ignore, ERR is dropped. No error condition other than possibly encoded in the regular
return value is propagated to the caller.
Most of the functions in <math.h> could use this out-of-band return convention. Table VII

lists other functions in the C library that could profit from this feature and that are not
suited for one of the derived return modes that follow.

Table VII. C library functions that could use oob_return_error directly

fgetwc
fputwc
strtod
strtof

strtoimax
strtold
strtoll
strtol

wcstod
wcstof
wcstoimax
wcstold

wcstoll
signal

3.4. oob_return_minus1 (derived): set errno and return -1

This construct is intended for the implementation of functions that follow the legacy errno
convention to return error codes, but have the additional convention to return -1.
A caller can avoid to trigger the use of errno, by calling this function under capture. The

specific error code is then lost.

Synopsis:.

N2361:12 Jens Gustedt

#define oob_return_minus1 (...) oob_return_error ((__VA_ARGS__), -1)

This requires that R must be assignment compatible with int.

Table VIII lists the functions in the C library that could profit from this feature.

Table VIII. C library functions that could use oob_return_minus1

c16rtomb
c32rtomb
ftell
mbrtoc16

mbrtoc32
mbrtowc
mbsrtowcs
wcrtomb

wcsrtombs
wcstoull
wcstoul
wcstoumax

strtoull
strtoul
strtoumax

3.5. oob_return_neg (derived): set errno and return its negative
This construct is intended for the implementation of functions that follow the legacy errno
convention to return error codes, but have the additional convention to return a negative
value on error.
A caller can avoid to trigger the use of errno, by calling this function under capture or

ignore.
If you must use an errno convention, use this one, because it can effectively avoid using

errno at all.

— If otherwise all valid return values of the functions are non-negative, users can call such
a function through oob_ignore and still receive all error information through the return
value.

— If valid returns of the functions may be negative, (e.g as for printf) users can call such
a function through oob_ignore and still receive all error information through the return
value.

Synopsis:.

#define oob_return_neg (...) \
do { \

int code = (__VA_ARGS__); \
oob_return_error(code , -code); \

} while(false)

This requires that R must be assignment compatible with int.

Table IX lists the functions in the C library that could profit from this feature.

Table IX. C library functions that could use oob_return_neg

fgetpos
fprintf
fscanf
fsetpos printf
scanf
snprintf

sprintf
sscanf
swprintf
swscanf
vprintf
vscanf

vsnprintf
vsprintf
vsscanf
vswprintf
vswscanf
vwprintf

vwscanf
wprintf
wscanf

Out-of-band bit for exceptional return and errno replacement N2361:13

3.6. oob_return_zero (derived): set errno and return (R){0}

This construct is intended for the implementation of functions that follow the legacy errno
convention to return error codes, but have the additional convention to return 0 (if R is
a real or complex type) or a null pointer (if R is a pointer type) or, more generally, a
default-initialized rvalue.
A caller can avoid to trigger the use of errno, by calling this function under capture or

ignore, but the additional information in the error code will be lost.

Synopsis:.

#define oob_return_zero (...) oob_return_error ((__VA_ARGS__), (R){ 0 })

This requires R to be a complete type.

4. POSSIBLE IMPLEMENTATIONS
The proposed API for out-of-band return can be implemented in very different ways, and
it would be up to platform ABI designers to chose the appropriate conventions depending
on the characteristics of their platform and on the objectives and constraints that have to
be fulfilled.
Because the specification is voluntarily wage, the mechanisms to choose from for imple-

mentations are various:

(1) The four calling conventions can be implemented by
(a) four different functions, one for each convention;
(b) five different functions, one for each convention and and additional one to dispatch

between them;
(c) a single function that dispatches between the conventions according to oob_mode.

This could be provided an additional function parameter, or a hidden register state;
(d) one function for direct and plain mode and one for ignore and capture.

(2) The macros or functions oob_plain, ..., that are used to issue the function call according
to the calling convention
(a) may be based on pointer arithmetic for the function pointer (caller dispatch), or
(b) on passing information through function parameter or a spare hardware register or

flags into a function that serves as the discriminator oob_mode (callee dispatch).
(3) The out-of-band return convention can be implemented

(a) verbatim, by providing a pointer to flap for the return of the out-of-band bit,
(b) implicitly, by returning the out-of-band bit through a spare hardware register or flag.

In the following we will briefly expand different scenarios that show how to adapt the
implementation to different needs, and finally propose a generic ABI extension that can
guarantee that different implementation choices remain interoperable.

4.1. Implementation of the out-of-band bit itself
The easiest way to implement the out-of-band bit feature is certainly not to use the extra
flap parameter and to keep all functions that are produced with the same prototype and
ABI. To return the bit information for capture, we than have to find another out-of-band
channel to transfer the bit.
There are several possibilities for such channels. Using thread local storage, would be one

possibility, but it would reintroduce the same cost as for errno that we are trying to avoid
in the first place. Another possibility would be to use some processor flag, such as a carry
or overflow bit. Setting such a bit could be triggered immediately before the return from
the callee, and checked immediately after the return by the caller. Implementing such an
approach needs some good knowledge of the architecture in question, in particular it must
be clear that setting such a bit cannot have influence on code that doesn’t expect it.

N2361:14 Jens Gustedt

A more direct and portable (to some extend) way to implement the out-of-band bit is
to use a hardware register as the channel. Such a register would have to be such that
the caller would not otherwise rely on the value of it. That is it must be either a so-
called scratch register (a register that is completely at the disposal to functions without
restrictions) or a caller save register (a register that is spilled before calling a function and
restored afterwards). A list of such hardware registers for different common architectures is
presented in Table X.

Table X. Common architectures and available registers

CPU architecture scratch or caller save register
x86 ecx
x86-64 r10, r11
arm32 r12
arm64 x9 to x15
mips $t4 to $t8
68k d0, d1, a0, a1

After chosing an appropriate register, an implementation can then implement oob_return
with something similar as the following code. It and the following code are examples for
gcc and the x86 architecture. We use __typeof__, __asm__ and {(...)} extensions of
gcc, the ecx hardware register for this particular architecture and we assume that data and
function pointers have the same representation. Obviously, other compilers would have to
use their own magic for that.

#define oob_return (...) \
({ \

/* Compute the return value first , so there are */ \
/* no side effects on hardware registers , later. */ \
__typeof__(__VA_ARGS__) __oob_ret = (__VA_ARGS__); \
/* now set the bit , mark the register as clobbered , */ \
/* and ensure that this will not be reordered */ \
__asm__ volatile("movl␣$1, %ecx" : : : "c"); \
return __oob_ret; \

})

Usually oob_return should result in just the addition of the movl instruction to the function
code.
Capturing this bit is a bit more complicated, because we have also have to somehow get

our hands on the address of the capture variant of the called function. Here, __oob_align is
a fixed alignment boundary, where the compiler places the direct function itself and a table
of function pointers to the different out-of-band functions, and where the capture function
is placed in slot 3, __oob_capture represents the modified calling sequence itself.

#define oob_capture(FL, FU, ...) \
({ \

/* Compute the function address first , see below. */ \
unsigned char const* __oob_base = (void const*)(FU); \
/* This a pointer to a table of functions. */ \
__typeof__ (*(FU))*const*__oob_tab = (void const*)(__oob_ base -__oob_align);\

\
/* Do the capture function call itself and retain the return values. */ \
uint32_t __oob_flag; \
__typeof__ ((FU)(__VA_ARGS__)) __oob_ret; \
__oob_capture(__oob_ret , __oob_flag , __oob_tab [3], __VA_ARGS__); \

\

Out-of-band bit for exceptional return and errno replacement N2361:15

/* FL just has to be an assignable lvalue , maybe without address */ \
(FL) = __oob_flag; \
/* last expression is the "return" of the block */ \
__oob_ret; \

})

__oob_capture should produce exactly the same sequence of instructions as a normal
function call with return value stored in __oob_ret, only that immediately after the call
instruction itself an instruction equivalent to the following movl into the memory ("m"
constraint of the instruction) of __oob_flag should be issued.

__asm__ volatile("movl␣%ecx ,␣$0" : "m" (__oob_flag) : "c");

Thus, the overhead for the out-of-band bit itself are just moves to and from memory. Also
observe that for this example on gcc it would be simple to adapt to another architecture
by parametrizing the macros with the hardware register that is to be used.
With this strategy an implementation could use the capture function also for ignore, here

placed in slot __oob_tab[2]:

#define oob_ignore(FL, FU, ...) \
({ \

/* Compute the function address first , see below. */ \
unsigned char const* __oob_base = (void const*)(FU); \
/* This a pointer to a table of functions. */ \
__typeof__ (*(FU))*const*__oob_tab = (void const*)(__oob_ base -__oob_align);\

\
/* Do the capture function call itself and return the value. */ \
__oob_tab [2](__VA_ARGS__); \

})

With such an implementation, the only overhead that would occur for such an ignore call
is one useless movl instruction for the out-of-band bit into the register before the return
from the function.

4.2. Implementation for time efficiency
For an implementation that wants to take advantage of all the optimization opportunities
and that is not too much constrained by the binary code size that would be produced,
the natural approach is to compile four different functions for the four calling conventions.
Thereby, the different return conventions can be integrated well into the function code and
unfold their full optimization potential.
In particular, a function that uses oob_return_never should be able to eliminate all such

code paths in direct mode, and the direct call to such a function should not incur any
overhead. This is why direct mode here is best served by resolving the function symbol
itself (e.g toto) to the function that implements the direct mode (e.g toto ∶∶direct).
To call the other three modes (plain, ignore and capture) the corresponding call macros

must implement some “trick” that allows them to deduce the address of the corresponding
derived function. Probably the simplest way to achieve that on most architectures will be
to place the necessary information at a known offset from the start address of the direct
function, namely a const-qualified table that contains the four different function addresses,
see the above macro for an example. The overhead for determining the function pointer is
then one subtraction (with an immediate value) and one indirection, and can completely be
optimized by the compiler if the function itself is specified directly, and not via a function
pointer.

N2361:16 Jens Gustedt

[[__RETURN__]] R (* totoPointer)(A, B) = toto;
...
R ret = oob_capture(totoPointer , a, b); // overhead for finding toto ∶∶ capture
...
R rot = oob_capture(toto , a, b); // toto ∶∶ capture known at compilation

4.3. Implementation under memory constraints
When implementing out-of-band under strong memory constraints, in particular for the
code size, we have to ensure that only one complete function is generated for all calling
conventions. To distinguish the different calling conventions we then have to put the dis-
criminant value oob_mode in the calling environment. When called, a function can then
distinguish with which convention it was called.
As a way to provide that information we can again chose to use a caller saved hardware

register or a scratch register. This hardware register could be the same as for the out-of-band
bit, but it must not necessarily, see Table X above.
If we don’t want to be incompatible to an already existing ABI, we have to ensure that

an caller that has been compiled without out-of-band support will not accidentally trigger
a special calling convention of a function with out-of-band support. The assembly for such
an amended function prolog can be seen in the following:

.globl toto

.type toto , @function

.globl toto ∶∶xtra

.type toto ∶∶xtra , @function
toto: mov ecx , 0
toto ∶∶xtra: push ecx

mov ecx , 0
/* Continue with the usual function prolog */
...
/* recover the value from the stack position into oob_mode */

Here, we provide two different entry points to the function, toto and toto ∶∶xtra. The first
for direct calls ensures that the hardware register is set to 0. The second ensures that it
isn’t and that the value of the register can be stored on the stack. At the end of the prolog,
the value can then be retrieved into oob_mode.
The individual return conventions can then rely on oob_mode to switch between the dif-

ferent return strategies.
Overall, this strategy trades a little bit of computing against code size. Some instruc-

tions are added to each function prolog and out-of-band return conventions have additional
branches according to the calling convention with which the function has been called.

4.4. A generic ABI extension strategy
The strategies presented above will not only depend on a particular architecture, but also
on other parameters such as the optimization level or the specific needs of applications.
Therefore, it seems important to provide a generic ABI extension that can be used for
any of these strategies and that guarantees that code compiled for different requirements
remains interoperable. We think that this can be established by the following choices:

(1) Designate a spare hardware register from Table X, OOB_REG, say, that will serve as
oob_mode on entry and as out-of-band bit on return.
(a) To dispatch to the convenient calling convention on entry, we must guarantee that

OOB_REG can be arbitrary for direct mode, and that it is set to values 1, 2 and 3 for
modes plain, ignore and capture, respectively.

(b) In capture mode, return the out-of-band bit in OOB_REG on return.

Out-of-band bit for exceptional return and errno replacement N2361:17

(2) Chose an alignment value __oob_align. For most architectures this should probably be
the size of four function pointers (sizeof(void(*[4])(void))), but larger values could
be suitable, either for the original calling convention, or because the implementation
wants to add some more information.

(3) Prefix the direct function with a readonly table for the four function pointers and align
both (table and function) at __oob_align bytes.

An amended function prolog (still for gcc and x86) could for example look as follows:

.globl toto ∶∶table

.align 16

.type toto ∶∶table , @object
toto ∶∶table:

.quad toto

.quad toto ∶∶plain /* could be the same as toto */

.quad toto ∶∶ ignore /* could be the same as toto ∶∶ capture */

.quad toto ∶∶ capture

.size toto ∶∶table , .-toto ∶∶table

.globl toto

.align 16

.type toto , @function
toto: /* Continue with the usual function prolog */

Such a general strategy has only a small overhead for any of the variants that we have
introduced above:

—The memory overhead of the table is __oob_align bytes. In addition there can be some
overhead for the alignment of maximally another __oob_align bytes. Usually this means
a maximal overhead of 16+ 15 = 31 bytes on 32 bit machines and 32+ 31 = 63 bytes for 64
bit machines.

—Depending on the strategy a superfluous movl can be issued to initialize OOB_REG to the
required constant.

5. CONCLUSION
We presented an ABI and generic API for an out-of-band error convention for C. It splits
possible calls of functions into four different modes, and adds a distinction of four different
return conventions. It has the advantage of being backwards compatible as much as possible.
Nobody is forced to do anything:

—Applications can completely ignore this mechanism and find themselves with basically the
same binary code as before.

—Compiler implementors, as soon as they implement C2x’ attributes, may ignore all function
attributes and only provide minimal syntactical support for the presented macros.

—Platform ABI need only a minimal specification to allow compatible implementations.
Basically they have to decide on a function table offset and a spare hardware register
that will be used to propagate the calling mode oob_mode into a function call and the
out-of-band bit on return.

—C library implementors may start integrating these features step by step, function by
function, as long as they keep their header files in line with their implementation.

The opportunities of such an interface are multiple:

—C’s math functions can be annotated with attributes that makes calls to them suitable
for constant propagation.

—Generally legacy interfaces can be used more efficiently at points where it is known that
error paths will not be taken.

N2361:18 Jens Gustedt

—New C interfaces can take advantage of these conventions and avoid to introduce error
return via errno.

—C or other programming languages can build on top of such a mechanism to specify more
sophisticated error handling such as try/catch schemes.

—This provides a migration path, such that, on the long run, C could get rid of the errno
convention all together.

References
Niall Douglas. SG14 status_code and standard error object for P0709 Zero-overhead deterministic excep-

tions. Technical report, ISO/IEC JTC 1/SC 22/WG21, 2018a. URL https://wg21.link/P1028.
Niall Douglas. Zero overhead deterministic failure — A unified mechanism for C and C++. Technical Report

N2289, ISO/IEC JTC 1/SC 22/WG14, 2018b. URL http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n2289.pdf.

Doug Gregor. Deprecating exception specifications. Technical report, ISO/IEC JTC 1/SC 22/WG21, 2010.
URL https://wg21.link/N3051.

Jacob Navia. Proposal for a new calling convention within the C language. Technical Report N2285, ISO/IEC
JTC 1/SC 22/WG14, 2018. URL http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2285.pdf.

James Renwick, Tom Spink, and Björn Franke. Low-cost deterministic C++ exceptions for embed-
ded systems. In Proceedings of the 28th International Conference on Compiler Construction,
CC 2019, pages 76–86, 2019. . URL https://www.research.ed.ac.uk/portal/en/publications/
lowcost-deterministic-c-exceptions-for-embedded-systems(2cfc59d5-fa95-45e0-83b2-46e51098cf1f)
.html.

Herb Sutter. Zero-overhead deterministic exceptions: Throwing values. Technical report, ISO/IEC JTC
1/SC 22/WG21, 2018. URL https://wg21.link/P0709.

https://wg21.link/P1028
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2289.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2289.pdf
https://wg21.link/N3051
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2285.pdf
https://www.research.ed.ac.uk/portal/en/publications/lowcost-deterministic-c-exceptions-for-embedded-systems(2cfc59d5-fa95-45e0-83b2-46e51098cf1f).html
https://www.research.ed.ac.uk/portal/en/publications/lowcost-deterministic-c-exceptions-for-embedded-systems(2cfc59d5-fa95-45e0-83b2-46e51098cf1f).html
https://www.research.ed.ac.uk/portal/en/publications/lowcost-deterministic-c-exceptions-for-embedded-systems(2cfc59d5-fa95-45e0-83b2-46e51098cf1f).html
https://wg21.link/P0709

	Front matter
	Contents
	Foreword
	Introduction

	2 Calling conventions
	2.1 direct and plain call
	2.2 Special calling conventions
	2.2.1 ignoring the out-of-band bit and error conditions
	2.2.2 capturing the out-of-band bit

	2.3 Call convention dependent switching

	3 Special return conventions
	3.1 oob_return: return value and eventually set the out-of-band bit
	3.2 oob_return_never: optimize out or return value and set the out-of-band bit
	3.3 oob_return_error: set errno or raise a floating point exception
	3.4 oob_return_minus1 (derived): set errno and return -1
	3.5 oob_return_neg (derived): set errno and return its negative
	3.6 oob_return_zero (derived): set errno and return (R){0}

	4 Possible implementations
	4.1 Implementation of the out-of-band bit itself
	4.2 Implementation for time efficiency
	4.3 Implementation under memory constraints
	4.4 A generic ABI extension strategy

	5 Conclusion

