ISO/IEC JTC 1/SC 22/WG14 JNE{]

March 30, 2019 vl
Unify string representation functions
proposal for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

The recent integration of T'S 18661-1 has added string representation functions for floating point types. The
added functions are not entirely satisfactory, because they have names that do not fall into none of the
established schemes, because they allow for security breaches via dynamic format arguments, and because
they do not provide a type-generic interface. We propose to extend the function interface to all scalar types,
to close the security gap and to provide a type-generic macro that combines all the functions.

1. INTRODUCTION

The integration of TS 18661-1 has added three functions that provide string representa-
tions for floating point types, namely strfromd, strfromf and strfroml by means of a call
snprintf(buffer, len, lformat, x). This paper builds upon N2359 that already renames
the functions to tostrd, tostrf and tostrl. Such a naming scheme is still not satisfactory,
since it could lead to confusion about the source type: tostrd could also stand for int,
tostrl for long. In particular, this scheme is not easy to extend to other arithmetic types.
These functions also inherit the potential security problem from snprintf that allows the
format string to be dynamic. Thus, incorrect format strings can not always be detected at
compile time leading to possible stack exploits. For simple cases that print the representation
of one single scalar data of a known type, all specification errors should be detected at
translation time and diagnosed.

The new interfaces are also unnecessarily restrictive concerning the possible types. There is
no apparent reason why such interfaces cannot be provided for all scalar types. In addition,
the interfaces should be easy to use with convenient default formats. Therefore we propose
to make the format parameter optional as the last of four arguments to the functions.

We propose:

(1) A naming scheme that is guided by the printf specifiers, to extend to all types that are
provided by this function, and to determine a default specifier for each of the function-
s/types.

(2) To extend the scheme to complex types, if provided by the implementation.

(3) To extend the scheme to data pointer types.

(4) To regroup all these functions into a type-generic macro that allows a simple and nor-
malized access to string representations of all arithmetic data types.

2. REAL TYPES

The printf functions provide conversion specifiers for all standard real types other than
bool. Thus there is no reason not to provide functions for all of the supported types and
thus to provide a unified interface to print string representations.

Seen like that, it is much easier to have a naming scheme for such functions that combines a
default conversion specifier R with the necessary length specifier L, if any, for the type. We
combine these into function names of the form tostr RL, similar as this is done for the other
conversion direction, namely string to arithmetic type. In analogy of the strtoull function
we use tostrull for a function that converts unsigned long long to a string representation.
R is "i" for signed integer types, "u" for unsigned types and "g" for floating-point points.
This should provide sufficient defaults for a decimal representation of all standard real
types. We chose "i" for signed integers, because it is easier to distinguish than "d" which

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2359+appendix.pdf

N2360:2 Jens Gustedt

also could refer to double. The new clause 7.22.1.5 (c¢f. appendix) has a comprehensive table
of all possible combinations for R and L for real types.

In addition to the standard real types, we also expect implementations to provide functions
for all mandatory real types that are not covered by the above and also to extend this to
the types as described in Clause 7.20 (<stdint.h>).

The conversion specifier "c” is special, because it is not possible to distinguish plain and
wide characters via their type. In particular, integer character constants ('A') have type
int and wide character constants (L'A') have type wchar_t. So for implementations for
which wchar_t is in fact int, such constants are not distinguishable. Since in general we
can’t know which integer type is used as wchar_t we allow "c” for all integer types. For
these functions the width of the type decides if conversion "c¢" or "1c” is applied.

For implementations that define wchar_t to be int, and that have different encod-
ings for the base source character set and for the extended source character set
(__STDC_MB_MIGHT_NEQ_WC__ defined) the usage of "c" might lead to surprising results. But
we don’t think that there would be an easy way out for that special case.

With the exception of float, all specifiers L from the function name specify the length
modifier that is used together with the rest of the format. For float the situation is special,
because it is not directly supported by printf. Here we introduce the artificial value 'H'.
Thus, the latter is not used as a length modifier. The alternative would have been to have
no function for float, but it seems that there in IEC 60559 is a need for a function that
reduces excess precision in that case.

To avoid security gaps, the requirement is to use string literals for the format or to even
leave it out if there is no ambiguity. The proposed text below shows simple means to
implement and to check these properties during compilation. This requirement implies that
all format and type information can be checked for consistency at translation time, and
thus diagnostics can be enforced for all violations.

Examples

size_t const mlen = tostrull(@, @, ULLONG_MAX, "o") + 2; // + sign or prefix
char buffer[mlen+1];

tostrull (buffer, mlen, 7, "#0"); // converts to unsigned, prints "@7"
tostrill (buffer, mlen, LLONG_MIN); // decimal, including the - sign
tostrill (buffer, mlen, ULLONG_MAX); // invalid conversion, overflow
tostrull (buffer, mlen, LLONG_MIN); // converts to unsigned, large
tostrc(buffer, mlen, 'A'); // prints "A"

tostrc(buffer, mlen, L'A"); // depends on __STDC_MB_MIGHT_NEQ_WC__
tostrcl (buffer, mlen, 'A"); // depends on __STDC_MB_MIGHT_NEQ_WC__
tostrcl(buffer, mlen, L'A"); // prints "A"

tostruj (buffer, mlen, 'A"); // prints the basic numerical code
tostruj(buffer, mlen, L'A"); // prints the extended numerical code
tostruj(buffer, mlen, L'A"', "c"); // prints "A"

tostruj(buffer, mlen, 'A', "c"); // depends on __STDC_MB_MIGHT_NEQ_WC__
static char format[] = "#.37x"; // character array object

tostrul (buffer, mlen, LLONG_MAX, format); // diagnosis: not a string literal

3. COMPLEX TYPES

If the implementation supports complex types, we require that analogous functions for
them are defined where the name has a tostrc prefix, so tostrcg, tostrcgH and tostrcgL.
Complex number are then printed as 1.0+2.0i or 1.0-2.01, where real and imaginary part
are printed according to the format and the same rules as real floating-point types.

Unify string representation functions N2360:3

4. POINTER TYPES

With snprintf, data pointer values can be printed with a "p"” conversion specifier if they
are converted to voidx, first. This is to be distinguished from the "s" conversion specifier
which views a pointer as the address of a string (plain or wide) and which then prints the
string.

There is a particular difficulty to interface wide character strings, because wchar_t is not a
separate type, but only a semantic type on top of the usual base types. Therefore a wchar_t
pointer can be a legimitate integer array or represent a wide character string without a
visible difference in the type system.

We propose two different functions that take pointer values, both after conversion to a void
pointer.

n.n nan

P | "s
tostrs | pointer value plain character string (default)
tostrp | pointer value (default) | wide character string

5. A TYPE GENERIC INTERFACE

For the user’s comfort, all of these functions can be folded together in a type-generic macro
that covers all scalar types. Because semantic types may or may not be covered by the
basic types, the details which particular function to chose for a given type become a bit
messy. We prefer the use of the functions for basic types over the functions that depend on
semantic types (tostrij, tostrit, tostruj, tostruz).

The choices are such that "c" specifiers will always attempt to print a plain or wide character
argument, and "s” will always interpret the pointer as a pointer to a string (plain or
wide). Still, results for implementations that define __STDC_MB_MIGHT_NEQ_WC__ can be a
bit surprising.

Examples
size_t const mlen = tostr(@, @, ULLONG_MAX, "o") + 2; // + sign or prefix
char buffer[mlen+1];
tostr (buffer, mlen, 7, "#0"); // invalid specifier for int
tostr (buffer, mlen, 7u, "#0"); // prints "@7"
tostr (buffer, mlen, LLONG_MIN); // decimal, including the - sign
tostr (buffer, mlen, ULLONG_MAX); // decimal
tostr (buffer, mlen, 'A'"); // prints the basic numerical code
tostr (buffer, mlen, L'A'); // prints the extended numerical code
tostr (buffer, mlen, L'A', "c"); // prints "A"
tostr (buffer, mlen, 'A', "c"); // depends on __STDC_MB_MIGHT_NEQ_WC__
tostr (buffer, mlen, "word"); // copies the string into buffer
tostr (buffer, mlen, L"word"); // prints a pointer value
tostr (buffer, mlen, u8"word"); // copies the utf8 string into buffer
tostr (buffer, mlen, "word"”, "p"); // prints a pointer value
tostr (buffer, mlen, L"woérd”, "p"); // prints a pointer value
tostr (buffer, mlen, u8"word”, "p"); // prints a pointer value
tostr (buffer, mlen, "word"”, "s"); // copies the string into buffer
tostr (buffer, mlen, L"word”, "s"); // prints a multi-byte string
tostr (buffer, mlen, u8"word”, "s"); // copies the utf8 string into buffer
static char format[] = "#.37x"; // character array object
tostr (buffer, mlen, ULLONG_MAX, format);// diagnosis: not a string literal

N2360:4 Jens Gustedt

6. PROBLEMS

Besides the problems for character types mentioned above, the printf family suffers from
the fact that the decimal point for floating-point representations depends on the locale. It
would be good if we could get rid of that dependency at least for the "a" and "A" conversions.

Appendix: pages with diffmarks of the proposed changes
against the N2359 proposed changes.

The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2359+appendix.pdf

N2360 NOWANT..tostr working draft — March 30, 2019 ISO/IEC 9899:202x (E)

outside external declarations or preceding all explicit declarations and statements inside a compound
statement. When outside external declarations, the pragma takes effect from its occurrence until
another FENV_ROUND pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another FENV_ROUND pragma
is encountered (including within a nested compound statement), or until the end of the compound
statement; at the end of a compound statement the static rounding mode is restored to its condition
just before the compound statement. If this pragma is used in any other context, its behavior is
undefined.

direction shall be one of the rounding direction macro names defined in 7.6, or FE_DYNAMIC. If any
other value is specified, the behavior is undefined. If no FENV_ROUND pragma is in effect, or the
specified constant rounding mode is FE_DYNAMIC, rounding is according to the mode specified by
the dynamic floating-point environment, which is the dynamic rounding mode that was established
either at thread creation or by a call to fesetround, fesetmode, fesetenv, or feupdateenv. If the

FE_DYNAMIC mode is specified and FENV_ACCESS is “off”, the translator may assume that the default
rounding mode is in effect.

Within the scope of an FENV_ROUND pragma establishing a mode other than FE_DYNAMIC, all floating-
point operators, implicit conversions (including the conversion of a value represented in a format
wider than its semantic types to its semantic type, as done by classification macros), and invocations
of functions indicated in the table below, for which macro replacement has not been suppressed
(7.1.4), shall be evaluated according to the specified constant rounding mode (as though no constant
mode was specified and the corresponding dynamic rounding mode had been established by a
call to fesetround). Invocations of functions for which macro replacement has been suppressed
and invocations of functions other than those indicated in the table below shall not be affected
by constant rounding modes — they are affected by (and affect) only the dynamic mode. Floating
constants (6.4.4.2) that occur in the scope of a constant rounding mode shall be interpreted according
to that mode.

Functions affected by constant rounding modes

Header Function groups
<math.h> acos, asin, atan, atan2
<math.h> cos, sin, tan

<math.h> acosh, asinh, atanh
<math.h> cosh, sinh, tanh
<math.h> exp, exp2, expml

<math.h> log, Logl0, Loglp, Log2
<math.h> scalbn, scalbln, ldexp
<math.h> cbrt, hypot, pow, sqrt

<math.h> erf, erfc

<math.h> lgamma, tgamma

<math.h> rint, nearbyint, Lrint, 1lrint
<math.h> fdim

<math.h> fma

<math.h> fadd, daddl, fsub, dsubl, fmul, dmull, fdiv, ddivl, ffma,
dfmal, fsqrt, dsqrtl

<stdlib.h> | atof, strtod, strtof, strtold, testrd,tostrf—tostrl-
tostrg, tostrgH, tostrgl

<wchar.h> wcstod, westof, westold

<stdio.h> printf and scanf families

<wchar.h> | wprintf and wscanf families

Each <math. h> function listed in the table above indicates the family of functions of all supported
types (for example, acosf and acosl as well as acos).

NOTE Constant rounding modes (other than FE_DYNAMIC) could be implemented using dynamic rounding modes as
illustrated in the following example:

§7.6.2 Library 157

N2360 NOWANT..tostr working draft — March 30, 2019 ISO/IEC 9899:202x (E)

Returns
The atof function returns the converted value.

Forward references: the strtod, strtof, and strtold functions (7.22.1.3).

7.22.1.2 The atoi, atol, and atoll functions
Synopsis

#include <stdlib.h>

int atoi(const char xnptr);

long int atol(const char xnptr);

long long int atoll(const char xnptr);

Description

The atoi, atol, and atoll functions convert the initial portion of the string pointed to by nptr to
int, long int, and long long int representation, respectively. Except for the behavior on error,
they are equivalent to

atoi: (int)strtol(nptr, (char =x)NULL, 10)
atol: strtol(nptr, (char *x)NULL, 10)
atoll: strtoll(nptr, (char xx)NULL, 10)

Returns

The atoi, atol, and atoll functions return the converted value.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.4).

7.22.1.3 The strtod, strtof, and strtold functions
Synopsis

#include <stdlib.h>

double strtod(const char xrestrict nptr, char xxrestrict endptr);

float strtof(const char xrestrict nptr, char *xrestrict endptr);

long double strtold(const char xrestrict nptr, char *xrestrict endptr);

Description

The strtod, strtof, and strtold functions convert the initial portion of the string pointed to by

nptr to double, float, and long double representation, respectively. First, they decompose the
input string into three parts: an initial, possibly empty, sequence of white-space characters, a subject
sequence resembling a floating-point constant or representing an infinity or NaN; and a final string
of one or more unrecognized characters, including the terminating null character of the input string.
Then, they attempt to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

§7.22.1.3 Library 265

ISO/IEC 9899:202x (E) working draft — March 30, 2019 NOWANT..tostr N2360

returned (according to the return type and sign of the value, if any), and the value of the macro
ERANGE is stored in errno.

7.22.1.5 String representation functions for real types
Synopsis

#include <stdlib.h>
size_t n

int tostrRL(charxrestrict s, size t n, real-type x);_

int tostrRL(charxrestrict s, size t n, real-type x, const charxrestrict format);

Description

The string representation functions for real types are equivalent to snprintf(s, n, 1format, x)
(7.21.6.5). Their name is composed of the prefix tostr, a conversion specifier R and a possibly
empty length modifier L as given in the following table:

R | L | real-type function | possible C
C char tostrc C
c |1 | wint_t tostrcl C
hh | signed char tostrihh
h signed short tostrih
signed int tostri
il signed long tostril c,d, i
11 | signed long long tostrill
] uintmax_t tostrij
t ptrdiff_t tostrit
hh | unsigned char tostruhh
h unsigned short tostruh
unsigned int tostru
u |l unsigned long tostrul c,o, U, X, X
11 | unsigned long long | tostrull
j intmax_t tostruj
z size_t tostruz
H float tostrgH
g double tostrg a,A e E f,Fq,G
L long double tostrgL

format shall be a string literal that contains any of the following optional elements in the given
order; a + character S, a # character F, a precision P composed of a . character followed by a
sequence of decimal digits, and a conversion specifier C as indicated in the table above. If omitted,
C defaults to R. For tostrgH the format string 1format is then "%SFPC", and "%SFPLC" otherwise.

It is implementation-defined if additional real types are supported, but the set of covered types
includes at least all mandatory integer types other than _Bool and the supported among the
optional integer types described in <stdint.h> . If provided, the additional functions follow
analogous naming schemes and definitions. In particular, they use an R of i, u or g for signed,
unsigned and floating point types, respectively.

The specifier ¢ can be used with all integer types. If this specifier is used, F and S shall be empty.
and x shall not be negative. For tostrc, x shall not be greater than CHAR_MAX, for tostrcl it shall
not be greater than WINT_MAX. Special rules apply for functions other than tostrc and tostrcl if
called with C equal to c. If all positive values of wchar_t are representable in real-type, the call is as.
if replaced by a call to tostrcl, otherwise a call to tostre.

Unless a macro definition is suppressed in order to access an actual function the following apply:
format is optional and as if replaced by an empty string literal if it is omitted. A diagnostic shall be
issued if a format argument is provided that is not a string literal, if format is not of the required
form, orif Lformat is not a valid printf format for real-type.

Returns
268

Library §7.22.1.5

N2360 NOWANT..tostr working draft — March 30, 2019 ISO/IEC 9899:202x (E)

The string representation functions for real types return the number of characters that would have
been written had n been sufficiently large, not counting the terminating null character. Thus, the
null-terminated output has been completely written if and only if the returned value is less than n.

NOTE 1 Enforcing a string literal as an argument to format ensures that decisions and diagnostics about the formatting
may take place during translation and avoids that dynamically constructed snprintf format strings may breach security.
Implementations can supply the optional argument format and force a string literal for it by providing additional macros

#define tostrg(B, N, ...) _________ tostrg4(B, N, __VA ARGS__, "",)
#define tostrg4(B, N, ...) ~~~~ _ tostrg5(B, N, __VA ARGS__)

#define tostrg5(B, N, X, FORMAT, "" FORMAT "")

NOTE 2 If called with a floating point argument that has an evaluation format with a greater precision than its type,
according to 5.2.4.2.2 the functions tostrg, tostrgH and tostrgL will convert such an argument to the precision of their
respective parameter type before printing.

EXAMPLE The following shows examples of the use of the string representation functions:

size_t const mlen = tostrull(®, O, ULLONG_MAX, "o0") + 2; // + sign or prefix
char buffer[mlen+1];

tostrull (buffer, mlen, 7, "#0"); // converts to unsigned, prints "07"
tostrill(buffer, mlen, ULLONG_MAX) ; // invalid conversion, overflow

tostrc(buffer, mlen, L'A"); ___________// depends on __STDC_MB_MIGHT_NEQ WC__
Tostrcl(buffer, mlen, “A’): o f{ depends on __STDC_MB_MIGHT _NEQWC__

tostruj(buffer, mlen, 'A’); ~~~____J// prints the basic source encoding of A
tostruj(buffer, mlen, L'A’); // prints the extended source encodin

tostruj(buffer, mlen, L'A’, "c"); // prints "A"
tostruj(buffer, mlen, 'A’, "c"); // depends on __STDC_MB_MIGHT_NEQ_WC__

static char format[] = "#.37x"; // character array object
tostrul (buffer, mlen, ULLONG_MAX, format);// diagnosis: not a string literal

7.22.1.6 String representation functions for complex types
Synopsis

#include <stdlib.h>

int tostrcRL(charxrestrict s, size t n, complex-type X);
int tostrcRL(charxrestrict s, size t n, complex-type x, const charxrestrict format);

#endif

Description

The string representation functions for complex types are only supported if the implementation
supports complex types.

xreal, ximag) (7.21.6.5) where xreal and ximag are the real and imaginary part of x, respectively.
If a real type has a corresponding complex type and is supported by a function tostrRL as
of 7.22.1.5, there is a corresponding function tostrcRL for the complex type. format shall
follow the same rules as for tostrRL to determine S, F, P and C. 1lformat is then composed
of the corresponding format for tostrRL, followed by a second copy of that format, but with a
mandatory + for S, and then followed by the letter i.

§7.22.1.6 Library 269

ISO/IEC 9899:202x (E) working draft — March 30, 2019 NOWANT..tostr N2360

Unless a macro definition is suppressed in order to access an actual function the following apply:
format is optional and as if replaced by an empty string literal if it is omitted. A diagnostic shall be

issued if a format areument is provided that is not a string literal or if format is not of the required
form.

Returns

The same rules as for the functions in 7.22.1.5 apply.

NOTE1 Thus, for the three standard complex types, complex-type, function name and 1format used are then correspondin
to the following table:

complex-type | function | L&@e&
float _Complex

double _Complex tostreg | “ASEPCEPCL
long double _Complex | tostregl | "SFPLCWFPLCI"

NOTE 2 If called with a complex floating point argument that has an evaluation format with a greater precision than
its e, according to 5.2.4.2.2 the string representation functions for complex types will convert such an argument to the
recision of their respective parameter type before printing.

7.22.1.7 String representation functions for pointer types
Synopsis

#include <stdlib.h>
int tostrR(charxrestrict s, size_t n, void const volatilexrestrict x);
int tostrR(charxrestrict s, size t n, void const volatilexrestrict x,

Qﬁﬁgrimm

L7 21.6. 5uwm R that is elther
s or p. format shall be a string literal that contains any of the following optional elements in the
given order: a precision P composed of a . character followed by a sequence of decimal digits, and
a conversion specifier C thatis s or p. If omitted, C defaults to R.

If Cis p, the format string 1format is "%Pp". Otherwise, C is s, x shall not be null and shall
refer to a string (tostrs) or wide character string (tostrp), respectively. Then, for tostrs, x is
converted to char const volatilex before the call to snprintf and 1format is "%Ps"; for tostrp,
x is converted to wehar_t const volatilex before the call to snprintf and 1format is "sPls".

Unless a macro definition is suppressed in order to access an actual function the following apply:
format is optional and as if replaced by an empty string literal if it is omitted. A diagnostic shall be

issued if a format areument is provided that is not a string literal or if format is not of the required
form.

Returns
The same rules as for the functions in 7.22.1.5 apply.

7.22.1.8 The tostr type-generic macro
Synopsis

#include <stdlib.h>

int tostr(charxrestrict s, size t n, scalar-type x);_

int tostr(charxrestrict s, size t n, scalar-type x, const charxrestrict format);

Description

The tostr type-generic macro invokes a selected string representation function as mandated
by 7.22.1.5,7.22.1.6, and 7.22.1.7. The macro argument corresponding to format shall be omitted
or a string literal. If scalar-type is _Bool, a pointer to a qualified or unqualified version of char,
or a pointer to another data type, the selected function is tostri, tostrs, tostrp, respectively.
Otherwise, a function that receives scalar-type as third argument is selected. If there are several

270 Library §7.22.1.8

N2360 NOWANT..tostr working draft — March 30, 2019 ISO/IEC 9899:202x (E)

such functions the first function with L in the following list is selected: empty, 1, 11, j, z, t. The
selected function is then called with the same arguments.

A diagnostic shall be issued if x has a e that is not supported, if a format arcument is provided
that is not a string literal or if it is not of the required form for the selected function.

NOTE 1 An implementation that does support complex es and covers all mandated and optional arithmetic es b
the standard arithmetic types can implement tostr as:

#define tostr(B, N, ...) ~~~~_ __ tostr4(B, N, __VA_ARGS__, "",
#define tostr4(B, N, ...) ~~~~~~_ tostr5(B, N, __VA ARGS__)

#define tostr5(B, N, X, FORMAT, ...) ____________\
Generic(X, o\
___signed chars _ tostribh, ______\
___signed short: _ ___ tostrih, _ _ _ _______\
___sioned: _tostri, _____________\
___signed long long; ___tostrill, \

_Bool: tostri, \
____unsigned char:_ tostruhh, \
___unsigned short: _____tostruh, ___ _ ____ ___\
.. unsigned tostru, .\
__unsigned long: tostrul, \
___unsigned long long: _tostrull, ___ _ \
o fleat: tostroH, .\
___double: _ tostrg, ______________\
. float _Complex: _ _ tostregH, . .\

chars: tostrs, \

char constx: tostrs, \
___char volatilex; tostrs, \
__default: _____tostrp) _ _ __________\
o SBU N, X, MY FORMAT %)

The behavior of the shown macro definition for function pointer arguments depends on the behavior of the implementation
for implicit conversion of function pointers to voidx.

NOTE 2 The choices for the string representation functions are such that per default, char pointers are interpreted as
strings and all other data pointer types, even to wehar_t, print the pointer value. The value of a pointer to char can be
printed by using the p conversion specifier. Wide character strings can be printed by using the s conversion specifier. Thus,
acall tostr(buffer, n, str, 's") canbe used to represent str as multi-byte string regardless if str is a string or wide
character string,

NOTE 3 Similarly, only char values are interpreted as a character encoding. All other integer values, even if they are integer
character constants (type int) or are of type wchar_t, are printed as numbers. Wide or plain characters may be printed b

%c conversion specifier. Then, if __STDC_MB_MIGHT_NEQ_WC__ is not defined, a call tostr(buffer, n, chr, "c")
can be used to represent chr as a multi-byte string regardless if chr is a plain character, an integer character constant or a

wide character.

NOTE 4 If called with a floating point argument that has an evaluation format with a greater precision than its type,
according to 5.2.4.2.2 the type-generic macro tostr will convert such an argument to the precision of the argument type
before printing.

EXAMPLE The following shows examples of the use of the generic string representation macro:

size t const mlen = tostr(9, 0, ULLONG MAX, "0") + 2; // + sign or prefix
char_buffer[mlen+1];

tostr(buffer, mlen, 7, "#0"); _______// invalid specifier for int
tostr(buffer, mlen, 7u, "#0"); ________// prints 07"

(
tostr(buffer, mlen, LLONG MIN); // decimal, including the - sign
tostr(buffer, mlen, ULLONG MAX); ____// decimal

§7.22.1.8 Library 271

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2360

tostr

tostr(buffer, mlen, "A’'); __ ______J// prints the basic source encodin
tostr(buffer, mlen, L'A'); ~ _____// prints the extended source encodin

o~)~)~)~

tostr(buffer, mlen, L'A’, "c'); _______// prints A"
tostr(buffer, mlen, 'A’, "c'); ________ // depends on __STDC_MB_MIGHT NEQWC__
tostr(buffer, mlen, "word"); ________// copies the string into buffer
tostrbutfer, ulen, U8'wMO1S3rd"); . // copiss She WEIB string into butfer
«g§z11pgii9aA4iua1kAg%nzt;A;;;QAAAAAAAAz4As9p;sﬁﬁxngﬁ;aayr;;uu;;x&uﬁsz
tostr(buffer, mlen, u8"w\u0153rd", "s" ;// copies the utf8 string into buffer

static char format[] = "#.37x"; // character _array _object
tostr(buffer, mlen, ULLONG_MAX, format);// diagnosis: not a string literal

7.22.2 Pseudo-random sequence generation functions

7.22.2.1 The rand function
Synopsis

#include <stdlib.h>
int rand(void);

Description
The rand function computes a sequence of pseudo-random integers in the range 0 to RAND_MAX
inclusive.

The rand function is not required to avoid data races with other calls to pseudo-random sequence
generation functions. The implementation shall behave as if no library function calls the rand
function.

Recommended practice

There are no guarantees as to the quality of the random sequence produced and some implementa-
tions are known to produce sequences with distressingly non-random low-order bits. Applications
with particular requirements should use a generator that is known to be sufficient for their needs.

Returns
The rand function returns a pseudo-random integer.

Environmental limits
The value of the RAND_MAX macro shall be at least 32767.

7.22.2.2 The srand function
Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random numbers
to be returned by subsequent calls to rand. If srand is then called with the same seed value, the
sequence of pseudo-random numbers shall be repeated. If rand is called before any calls to srand
have been made, the same sequence shall be generated as when srand is first called with a seed
value of 1.

272 Library §7.22.2.2

N2360

working draft — March 30, 2019 ISO/IEC 9899:202x (E)

division /, fdiv, fdivl, ddivl 6.5.5, 7.12.14.4,
E10.11

squareRoot sqrt, fsqrt, fsqrtl, dsqrtl 7.12.7.5, E10.4.5,
7.12.14.6, F.10.11

fusedMultiplyAdd fma, ffma, ffmal, dfmal 7.12.13.1, F10.10.1,
7.12.14.5,F.10.11

convertFromInt cast and implicit conversion 6.3.14,6.54

convertToIntegerTiesToEven toint, touint 7.12.9.10, E10.6.10

convertTolntegerTowardZero
convertToIntegerTowardPositive
convertToIntegerTowardNegative

convertToIntegerTiesToAway

toint, touint, lround, 1lround

7.12.9.10, E10.6.10,

7.12.9.7,F10.6.7
convertToIntegerExactTiesToEven tointx, touintx 7.12.9.11,F10.6.11
convertTolntegerExactTowardZero
convertTolntegerExactTowardPositive
convertTolntegerExactTowardNegative
convertToIntegerExactTiesToAway
convertFormat - different formats cast and implicit conversions 6.3.1.5,6.5.4

convertFormat - same format

canonicalize

7.12.11.7, F10.8.7

convertFromDecimalCharacter

strtod, wcstod, scanf, wscanf,

72213, 7.294.1.1,

decimal floating constants 7.21.64, 7.29.2.12,
F5
convertToDecimalCharacter printf, wprintf, testrd-tostrg | 7.21.6.3, 7.29.2.11,
7.22.1.5,E5
convertFromHexCharacter strtod, wecstod, scanf, wscanf, | 7.22.1.3, 7.294.1.1,
hexadecimal floating constants 7.21.6.4, 7.29.2.12,
E5
convertToHexCharacter printf, wprintf, testrd-tostrg, | 7.21.6.3, 7.29.2.11,
722.1.5,E5
copy memcpy, memmove 7.242.1,7.24.2.2
negate - (x) 6.5.3.3
abs fabs 7.12.72,F10.4.2
copySign copysign 7.12.11.1, F10.8.1
compareQuietEqual == 6.5.9,F9.3
compareQuietNotEqual = 6.5.9,F9.3
compareSignalingEqual iseqsig 7.12.15.7, F10.14.1
compareSignalingGreater > 6.5.8, F9.3
compareSignalingGreaterEqual >= 6.5.8, F9.3
compareSignalingLess < 6.5.8, F9.3
compareSignalinglLessEqual <= 6.5.8, F9.3
compareSignalingNotEqual ! iseqsig(x) 7.12.15.7,F10.14.1
compareSignalingNotGreater I (x >y) 6.5.8, F9.3
compareSignalingLessUnordered ' (x >=y) 6.5.8, 9.3
compareSignalingNotLess ' (x <) 6.5.8, F.9.3
compareSignalingGreaterUnordered ' (x <= y) 6.5.8, F9.3
compareQuietGreater isgreater 7.12.15.1
compareQuietGreaterEqual isgreaterequal 7.12.15.2
compareQuietLess isless 7.12.15.3
compareQuietLessEqual islessequal 7.12.15.4
compareQuietUnordered isunordered 7.12.15.6
compareQuietNotGreater ! isgreater(x, y) 7.12.15.1
compareQuietLessUnordered ! isgreaterequal(x, y) 7.12.15.2
compareQuietNotLess I isless(x,) 712153
IEC 60559 floating-point arithmetic 393

	Introduction
	Real types
	Complex types
	Pointer types
	A type generic interface
	Problems

