
Proposed	update	for	TS	18661-4	
WG14	N2274	
	
Title:	 	 	 Augmented	arithmetic	functions	
Author:	 	 C	FP	Group	
Date:	 	 	 2018-06-30	
Proposal	category:	 New	feature	
Target	audience:	 IEEE	754-201x,	extra	precision,	reproducible	summation	
	
	
The	2018	update	to	IEEE	754	adds	optional	operations	for	augmented	arithmetic.	This	
is	a	proposal	to	update	TS	18661-4	to	specify	a	C	binding	for	these	operations.		
	
Changes	to	TS	18661:	
	
After	clause	8,	insert	the	clause:	

8a	 Functions	for	augmented	arithmetic	in	<math.h>	

This	clause	specifies	changes	to	C11	+	TS18661-1	+	TS18661-2	+	TS18661-3	to	
include	functions	that	support	operations	for	augmented	arithmetic,	as	
recommended	by	IEC	60559.	
	
Changes	to	C11	+	TS18661-1	+	TS18661-2	+	TS18661-3:	
	
After	F.10.12,	add:	
	 	

F.10.13	Augmented	arithmetic	

[1]	This	subclause	specifies	 types	and	functions	 for	<math.h>	 for	augmented	
arithmetic,	 as	 recommended	 by	 IEC	 60559	 for	 its	 binary	 formats.	 These	
functions	are	not	specified	for	decimal	types.	

[2]	 The	 functions	 in	 this	 subclause	 round	 to	 nearest	with	 ties	 toward	 zero,	 a	
rounding	 direction	 specified	 by	 IEC	 60559	 for	 use	 by	 augmented	 arithmetic	
operations.	 Thus,	 results	 are	 independent	 of	 dynamic	 and	 constant	 rounding	
direction	modes.	

[3]	The	types	are	structures	for	returning	two	floating-point	values:	

	 struct daug_t { double h; double t; };
	 struct faug_t { float h; float t; };
	 struct ldaug_t { long double h; long double t; };
	 struct _fNaug_t { _FloatN h; _FloatN t; };
	 struct _fNxaug_t { _FloatNx h; _FloatNx t; };

The	corresponding	real	type	of	the	structure	refers	to	the	type	of	the	members.	

F.10.13.1	The	augadd	functions	

Synopsis	

[1]	#define __STDC_WANT_IEC_60559_FUNCS_EXT__
#include <math.h>

 struct daug_t augadd(double x, double y);
 struct faug_t augaddf(float x, float y);
 struct ldaug_t augaddl(long double x, long double y);
 struct _fNaug_t augaddfN(_FloatN x, _FloatN y);
 struct _fNxaug_t augaddfNx(_FloatNx x, _FloatNx y);

Description	

[2]	The	augadd	functions	compute	two	result	values:			

h:	 the	sum	x	+	y	rounded	to	the	type	using	round-to-nearest	with	
ties	toward	zero;	

t	:	 the	error	in	h	as	a	computation	of	x	+	y.	

If	h	is	a	non-zero	finite	number,	t	has	the	value	x	+	y	–	h	(which	is	exactly	
representable	in	the	type).	If	h	is	zero,	t	has	the	value	of	h	(hence	both	have	the	
same	sign).	If	h	is	infinite,	t	has	the	value	of	h.	If	h	is	a	NaN,	t	is	the	same	NaN.		

[3]	These	functions	raise	floating-point	exceptions	like	the	computation	of	h,	except	
that	they	raise	the	“inexact”	floating-point	exception	only	when	the	computation	of	
h	overflows.	

[4]	A	range	error	occurs	when	the	computation	of	h	overflows.	The	“invalid”	
floating-point	exception	is	raised	and	a	domain	error	occurs	when	the	arguments	
are	infinities	with	different	signs.	

Returns	

[5]	These	functions	return	the	sum	and	error	in	a	structure.	

F.10.13.2	The	augsub	functions	

Synopsis	

[1]	#define __STDC_WANT_IEC_60559_FUNCS_EXT__
#include <math.h>

 struct daug_t augsub(double x, double y);
 struct faug_t augsubf(float x, float y);
 struct ldaug_t augsubl(long double x, long double y);
 struct _fNaug_t augsubfN(_FloatN x, _FloatN y);
 struct _fNxaug_t augsubfNx(_FloatNx x, _FloatNx y);

Description	

[2]	The	augsub	functions	compute	two	result	values:			

h:	 the	difference	x	−	y	rounded	to	the	type	using	round-to-nearest	
with	ties	toward	zero;	

t	:	 the	error	in	h	as	a	computation	of	x	−	y.	

If	h	is	a	non-zero	finite	number,	t	has	the	value	x	−	y	–	h	(which	is	exactly	
representable	in	the	type).	If	h	is	zero,	t	has	the	value	of	h	(hence	both	have	the	
same	sign).	If	h	is	infinite,	t	has	the	value	of	h.	If	h	is	a	NaN,	t	is	the	same	NaN.		

[3]	These	functions	raise	floating-point	exceptions	like	the	computation	of	h,	except	
that	they	raise	the	“inexact”	floating-point	exception	only	when	the	computation	of	
h	overflows.	

[4]	A	range	error	occurs	when	the	computation	of	h	overflows.	The	“invalid”	
floating-point	exception	is	raised	and	a	domain	error	occurs	when	the	arguments	
are	infinities	with	the	same	sign.	

Returns	

[5]	These	functions	return	the	difference	and	error	in	a	structure.	

F.10.13.3	The	augmul	functions	

Synopsis	

[1]	#define __STDC_WANT_IEC_60559_FUNCS_EXT__
#include <math.h>

 struct daug_t augmul(double x, double y);
 struct faug_t augmulf(float x, float y);
 struct ldaug_t augmull(long double x, long double y);
 struct _fNaug_t augmulfN(_FloatN x, _FloatN y);
 struct _fNxaug_t augmulfNx(_FloatNx x, _FloatNx y);

Description	

[2]	The	augmul	functions	compute	two	result	values:			

h:	 the	product	x	×	y	rounded	to	the	type	using	round-to-nearest	
with	ties	toward	zero;	

t	:	 the	error	in	h	as	a	computation	of	x	×	y.	

If	h	is	a	nonzero	finite	number,	t	is	x	×	y	–	h	rounded	to	the	type	using	round-to-
nearest	with	ties	toward	zero.	(The	computation	of	t	will	be	exact	unless	the	
magnitude	of	x	×	y	–	h	is	too	small.)	If	h	is	zero,	t	has	the	value	of	h	(hence	both	

have	the	same	sign).	If	h	is	infinite,	t	has	the	value	of	h.	If	h	is	a	NaN,	t	is	the	same	
NaN.		

[3]	These	functions	raise	floating-point	exceptions	like	the	computation	of	h,	with	
the	following	additional	specification.	They	raise	the	“underflow”	floating-point	
exception	when	and	only	when	the	computation	of	t	underflows.	They	raise	the	
“inexact”	floating-point	exception	when	and	only	when	the	computation	of	h	
overflows	or	the	computation	of	t	is	inexact.	

[4]	A	range	error	occurs	when	the	computation	of	h	overflows	and	may	occur	when	
the	computation	of	t	underflows.	A	domain	error	occurs	when	the	computation	of	h	
is	invalid.	

Returns	

[5]	These	functions	return	the	product	and	error	in	a	structure.	

Straightforward	updates	to	add	the	new	functions	above	to	the	lists	in	5.3	and	the	table	
in	clause	6,	in	TS	18661-4,	are	needed.	
	
The	following	changes	allow	type-generic	math	to	apply	to	the	functions	in	this	clause.	
	
In	7.25#5,	to	the	list	of	macro	names,	add	macro	names	for	the	functions	for	augmented	
arithmetic:	augadd,	augsub,	augmul.	
	
In	7.25#5,	change:	
	

If	all	arguments	for	generic	parameters	are	real,	then	use	of	the	macro	invokes	a	
real	function;	otherwise,	use	of	the	macro	results	in	undefined	behavior.	

to:	
	

If	all	arguments	for	generic	parameters	are	real,	then	use	of	the	macro	invokes	a	
function	 returning	 a	 real	 type	 or	 a	 function	 returning	 a	 structure	 whose	
members	are	of	one	real	type	(the	corresponding	real	type);	otherwise,	use	of	
the	macro	results	in	undefined	behavior.	

In	7.25#7,	add	to	the	list	of	examples:	
	

augadd(d,	ld)	 	 augaddl(d,	ld)	

	
	

