
WG14 N2106 
Meeting notes 

C	Floating	Point	Study	Group	Teleconference	
2016-12-01 
9 AM PDT / 12 PM EDT 
 
  Attendees: Rajan, Jim, Fred, Mike, David C., David H. 
 
  New agenda items: 
    Discussion of email from WG14 reflector message 14561 
 
  Last meeting action items: 
    Jim: Check one of the files from the EDG backup for testing the off site backup. - Done. 
    Jim: DR Set 3: Change positive-signed to non-negative. - Done (discussed later). 
 
  New action items: 
    Jim: Call David Keaton and ask for advice on how and when to present proposals for Parts 3-5. 
    Jim: Write up a proposed TC for DR501 to make the DECIMAL_DIG macro obsolescent. 
    All: Make sure we're OK with DDR9/DR11's change. 
    Jim: Ask the IEEE-754 revision mailing list if the payload for NaN's must be non-negative (0 

and up allowed). 
    Jim: Reflector message 14561: Fix up "macro argument" to something along the lines of 

7.25#3. 
 
  Next Meeting: 
    Tuesday January 24th, 2017, 12:00 EDT, 9:00 PST 
    Same teleconference number. 
 
  Discussion: 
    IEEE 754 revision: 
      Fred: There was discussion about -0/0 on the IEEE chain. Is this something that we need to 

bring into the C standard. 
      David C: fmax/fmin (C) issues (maxNum, minNum in IEEE): Looking for insights into what to 

do. 
        David H: Was it a mistake in IEEE 2008? If so, we can remove the item, or add a new item 

that does what we want (as a recommendation) so both ways don't break 
anyone. 

      David H: augmented/twoSum are added and settled down now. 
        Still issues with multiple exceptions, like signalling NaNs. Needs to be clarified. 
        Sub-exceptions bring up other issues. 
      Jim: The fmax/fmin in C adhere to the IEEE-754 operation right now. If it is removed from 

IEEE, we'd have to change the binding table. 
      Mike: Does anyone claim conformance to the IEEE-754:2008 standard? 
        David C: Never saw anyone. 
        Fred: No compiler I've seen defines the conformance macro. 
        Jim: HP did for Annex F (but that's the IEEE 754:1985 standard). 
 



    C++ liaison: 
      No update. 
     
    What should be proposed for the C standard (C2X): 
      Current status: 
        Part 1 and 2 are intended to be included. 
       
      Proposals for the other 3 parts: 
        Next C meeting mailing deadline is March 6th, 2017. 
        We need to decide what to do by the February meeting. 
        David H: How do the other C members feel about the other parts? 
          Part 3: Seemed to be not wanting to be implemented by some members, but not real 

resistance. 
          Part 4: Neutral opinion. Library so more likely to be accepted. 
          Part 5: Negative opinion with regards to exception handling (try/catch). 
        Jim: Since they will all be optional, others not implementing it should not be too much of a 

roadblock. 
          Part 3 is a wide ranging type so would prefer to see implementation experience. 
        Fred: A possible objection to Part 4 is if there is no implementation experience, do we have 

all the corner cases handled? 
          Jim: tanpi may have an argument (ones we added since it seemed to be omissions). The 

other two functions we added were added to the new IEEE-754 revision, but not 
this one. 

        Rajan: We can propose part 4 as is with the caveat of removing tanpi if desired. 
        Jim: For part 5, seems like a regularization of things implementations already do. This would 

provide portability. Perhaps separate out try/catch, and possibly the other parts 
that change flow control. 

        Fred: We can propose part 5 without try/catch. 
          Jim: How about break? 
        Fred: For part 4, should they functions go in the main body or an annex? 
        Jim: Like the TS, some in both the main body or in Annex F. As stated now, they will stay an 

optional feature. 
        Fred: Some compiler implementers may not have enough knowledge to do the alternate 

exception handling. 
          The hardware does not support everything. The compiler would have to do the mapping. 
          David H: Same issue with anything else for a compiler as it always maps from language to 

hardware. 
          Fred: One case is having a user requesting denorms flushed to zero, can be much slower 

than expected. 
          David H: At some point you have to know what your hardware is capable of. 
          Jim: The optimization pragma allows flush to zero, doesn't require it. For alternate 

exception handling, it has to be done, so it could require a lot of work. 
        Jim: Sub-exceptions is another complexity we need to talk about. 
          David H: Perhaps don't suggest this in the first round to the C committee? 
            Supporting sub-exceptions does require a lot of library and compiler support since the 

hardware normally does not support them all. 
        Jim: Note that part 5 is optional. Alternate exception handling is an optional part of part 5, 

and sub-exceptions are a "should" so triply optional. 
        *Jim: Call David Keaton and ask for advice on how and when to present these. 
          Present part 3 as is, but not pushed, and make clear the extent of the change, and have a 

fallback of referencing it if not accepted 
          Present part 4 with tanpi as a possible removal 
          Present part 5 without try/catch 



     
    DRs: 
      Set 2: 
              DR501 (DECIMAL_DIG): 
                For types wider than long double, like the types in Part 3, allowing DECIMAL_DIG to be 

larger can handle that. 
                Jim: Even a committee response saying it can be larger without a textual change in the 

standard would be good enough. 
                Since we have type specific ones (including part 3) maybe we don't need this. 
                Fred: The current wording says largest floating type. So it should be fine. 
                  Jim: You should be able to have wording that supports Part 3 and C11 without part 3. 
                    If you have a type that is wider than long double then DECIMAL_DIG would be 

larger. But C11 as it is only has the largest floating type as long double so it 
doesn't conform. 

                    A footnote would be better. 
                *Jim: We can make it obsolescent since there are type specific macros already. 
              DDR9/DR11 (%a formatting): 
                Need to watch this to make sure the late paper gets in and doesn't get missed. 
                *All: Make sure we're OK with DDR9/DR11's change. 
       
      Set 3: 
        DDR1 (November 1 email from Jim re payload with positive floating point integer)/Last 

meeting action item: 
          Precluded the payload from being zero. 
          Part 1 says 60559 says the payload is an integer value encoding in the significand. 
            754 says for decimal that the maximum is a certain value which implicitly says positive 

integers? 
          Fred: Isn't a payload of 0 for one type of NaN an infinity? 
          Jim: Maybe get confirmation of this from 754 before we decide on this here? 
 
    Other: 
      WG14 reflector message 14561 (Joseph Myers): 
        Jim sent an email discussing this issue (2016/12/01). 
        First change parallels DDR7. 
        Rajan: Second change: Does macro argument type make sense? Macro arguments don't 

have types since they are substituted during preprocessing and before we have 
types. 

          Need to match what we say in 7.25#3. 
        Jim: This does give the implementation a choice of functions to use (anything that is wide 

enough to produce the given result type). Since these are correctly rounded 
functions, it doesn't matter which one we pick. 
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