
© ISO/IEC 2013 – All rights reserved Draft Technical Specification – November 5, 2013

ISO/IEC JTC 1/SC 22/WG 14 N1778

Date: yyyy-mm-dd

Reference number of document: ISO/IEC TS 18661-1

Committee identification: ISO/IEC JTC 1/SC 22/WG 14 5

Secretariat: ANSI

Information Technology — Programming languages, their environments,
and system software interfaces — Floating-point extensions for C —
Part 1: Binary floating-point arithmetic

Technologies de l’information — Langages de programmation, leurs environnements et interfaces du logiciel 10
système — Extensions à virgule flottante pour C — Partie I: Binaire arithmétique flottante

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard. 15

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: Technical Specification
Document subtype:
Document stage: (20) Preparation
Document language: E

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

ii © ISO/IEC 2013 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose 5
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56 CH-1211 Geneva 20 10
Tel. +41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. 15

Violators may be prosecuted.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved iii

Contents Page

Introduction ... v!
 Background ... v!
 IEC 60559 floating-point standard ... v!
 C support for IEC 60559 ... vi!5
 Purpose .. vii!
1! Scope ... 1!
2! Conformance ... 1!
3! Normative references ... 1!
4! Terms and definitions ... 1!10

5! C standard conformance .. 2!
5.1! Freestanding implementations ... 2!
5.2! Predefined macros ... 2!
5.3! Standard headers ... 3!
6! Revised floating-point standard .. 5!15

7! Types .. 6!
7.1! Terminology ... 6!
7.2! Canonical representation .. 7!
8! Operation binding ... 8!
9! Floating to integer conversion .. 13!20

10! Conversions between floating types and character sequences .. 13!
10.1! Conversions with decimal character sequences .. 13!
10.2! Conversions to character sequences .. 14!
11! Constant rounding directions .. 15!
12! NaN support .. 22!25

13! Integer width macros .. 27!
14! Mathematics <math.h> .. 29!
14.1! Nearest integer functions .. 29!
14.1.1! Round to integer value in floating type .. 29!
14.1.2! Convert to integer type .. 31!30
14.2! The llogb functions .. 34!
14.3! Max-min magnitude functions .. 35!
14.4! The nextup and nextdown functions .. 36!
14.5! Functions that round result to narrower type ... 37!
14.6! Comparison macros .. 40!35
14.7! Classification macros .. 41!
14.8! Total order functions ... 43!
14.9! Canonicalize functions .. 44!
14.10! NaN functions ... 45!
15! The floating-point environment <fenv.h> ... 47!40
15.1! The fesetexcept function ... 47!
15.2! The fetestexceptflag function .. 48!
15.3! Control modes .. 48!
16! Type-generic math <tgmath.h> ... 50!
Bibliography .. 52!45

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

iv © ISO/IEC 2013 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and 5
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 10
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18661 was prepared by Technical Committee ISO JTC 1, Information Technology, Subcommittee
SC 22, Programming languages, their environments, and system software interfaces. 15

ISO/IEC TS 18661 consists of the following parts, under the general title Floating-point extensions for C:

! Part 1: Binary floating-point arithmetic

! Part 2: Decimal floating-point arithmetic

! Part 3: Interchange and extended types

! Part 4: Supplementary functions 20

! Part 5: Supplementary attributes

Part 1 updates ISO/IEC 9899:2011 (Information technology — Programming languages, their environments
and system software interfaces — Programming Language C), Annex F in particular, to support all required
features of ISO/IEC/IEEE 60559:2011 (Information technology — Microprocessor Systems — Floating-point
arithmetic). 25

Part 2 supersedes ISO/IEC TR 24732:2009 (Information technology – Programming languages, their
environments and system software interfaces – Extension for the programming language C to support decimal
floating-point arithmetic).

Parts 3-5 specify extensions to ISO/IEC 9899:2011 for features recommended in ISO/IEC/IEEE 60559:2011.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved v

Introduction

Background

IEC 60559 floating-point standard

The IEEE 754-1985 standard for binary floating-point arithmetic was motivated by an expanding diversity in
floating-point data representation and arithmetic, which made writing robust programs, debugging, and moving 5
programs between systems exceedingly difficult. Now the great majority of systems provide data formats and
arithmetic operations according to this standard. The IEC 60559:1989 international standard was equivalent to
the IEEE 754-1985 standard. Its stated goals were:

1 Facilitate movement of existing programs from diverse computers to those that adhere to this
standard. 10

2 Enhance the capabilities and safety available to programmers who, though not expert in
numerical methods, may well be attempting to produce numerically sophisticated programs.
However, we recognize that utility and safety are sometimes antagonists.

3 Encourage experts to develop and distribute robust and efficient numerical programs that are
portable, by way of minor editing and recompilation, onto any computer that conforms to this 15
standard and possesses adequate capacity. When restricted to a declared subset of the
standard, these programs should produce identical results on all conforming systems.

4 Provide direct support for

a. Execution-time diagnosis of anomalies

b. Smoother handling of exceptions 20

c. Interval arithmetic at a reasonable cost

5 Provide for development of

a. Standard elementary functions such as exp and cos

b. Very high precision (multiword) arithmetic

c. Coupling of numerical and symbolic algebraic computation 25

6 Enable rather than preclude further refinements and extensions.

To these ends, the standard specified a floating-point model comprising:

formats – for binary floating-point data, including representations for Not-a-Number (NaN) and signed
infinities and zeros

operations – basic arithmetic operations (addition, multiplication, etc.) on the format data to compose a 30
well-defined, closed arithmetic system; also conversions between floating-point formats and decimal
character sequences, and a few auxiliary operations

context – status flags for detecting exceptional conditions (invalid operation, division by zero, overflow,
underflow, and inexact) and controls for choosing different rounding methods

The IEC 60559:2011 international standard is equivalent to the IEEE 754-2008 standard for floating-point 35
arithmetic, which is a major revision to IEEE 754-1985.

The revised standard specifies more formats, including decimal as well as binary. It adds a 128-bit binary
format to its basic formats. It defines extended formats for all of its basic formats. It specifies data interchange

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

vi © ISO/IEC 2013 – All rights reserved

formats (which may or may not be arithmetic), including a 16-bit binary format and an unbounded tower of
wider formats. To conform to the floating-point standard, an implementation must provide at least one of the
basic formats, along with the required operations.

The revised standard specifies more operations. New requirements include – among others – arithmetic
operations that round their result to a narrower format than the operands (with just one rounding), more 5
conversions with integer types, more classifications and comparisons, and more operations for managing
flags and modes. New recommendations include an extensive set of mathematical functions and seven
reduction functions for sums and scaled products.

The revised standard places more emphasis on reproducible results, which is reflected in its standardization
of more operations. For the most part, behaviors are completely specified. The standard requires conversions 10
between floating-point formats and decimal character sequences to be correctly rounded for at least three
more decimal digits than is required to distinguish all numbers in the widest supported binary format; it fully
specifies conversions involving any number of decimal digits. It recommends that transcendental functions be
correctly rounded.

The revised standard requires a way to specify a constant rounding direction for a static portion of code, with 15
details left to programming language standards. This feature potentially allows rounding control without
incurring the overhead of runtime access to a global (or thread) rounding mode.

Other features recommended by the revised standard include alternate methods for exception handling,
controls for expression evaluation (allowing or disallowing various optimizations), support for fully reproducible
results, and support for program debugging. 20

The revised standard, like its predecessor, defines its model of floating-point arithmetic in the abstract. It
neither defines the way in which operations are expressed (which might vary depending on the computer
language or other interface being used), nor does it define the concrete representation (specific layout in
storage, or in a processor's register, for example) of data or context, except that it does define specific
encodings that are to be used for data that may be exchanged between different implementations that 25
conform to the specification.

IEC 60559 does not include bindings of its floating-point model for particular programming languages.
However, the revised standard does include guidance for programming language standards, in recognition of
the fact that features of the floating-point standard, even if well supported in the hardware, are not available to
users unless the programming language provides a commensurate level of support. The implementation’s 30
combination of both hardware and software determines conformance to the floating-point standard.

C support for IEC 60559

The C standard specifies floating-point arithmetic using an abstract model. The representation of a floating-
point number is specified in an abstract form where the constituent components (sign, exponent, significand)
of the representation are defined but not the internals of these components. In particular, the exponent range, 35
significand size, and the base (or radix) are implementation-defined. This allows flexibility for an
implementation to take advantage of its underlying hardware architecture. Furthermore, certain behaviors of
operations are also implementation-defined, for example in the area of handling of special numbers and in
exceptions.

The reason for this approach is historical. At the time when C was first standardized, before the floating-point 40
standard was established, there were various hardware implementations of floating-point arithmetic in
common use. Specifying the exact details of a representation would have made most of the existing
implementations at the time not conforming.

Beginning with ISO/IEC 9899:1999 (C99), C has included an optional second level of specification for
implementations supporting the floating-point standard. C99, in conditionally normative Annex F, introduced 45
nearly complete support for the IEC 60559:1989 standard for binary floating-point arithmetic. Also, C99’s
informative Annex G offered a specification of complex arithmetic that is compatible with IEC 60559:1989.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved vii

ISO/IEC 9899:2011 (C11) includes refinements to the C99 floating-point specification, though is still based on
IEC 60559:1989. C11 upgrades Annex G from “informative” to “conditionally normative”.

ISO/IEC Technical Report 24732:2009 introduced partial C support for the decimal floating-point arithmetic in
IEC 60559:2011. TR 24732, for which technical content was completed while IEEE 754-2008 was still in the
later stages of development, specifies decimal types based on IEC 60559:2011 decimal formats, though it 5
does not include all of the operations required by IEC 60559:2011.

Purpose

The purpose of this Technical Specification is to provide a C language binding for IEC 60559:2011, based on
the C11 standard, that delivers the goals of IEC 60559 to users and is feasible to implement. It is organized
into five Parts. 10

Part 1, this document, provides changes to C11 that cover all the requirements, plus some basic
recommendations, of IEC 60559:2011 for binary floating-point arithmetic. C implementations intending to
support IEC 60559:2011 are expected to conform to conditionally normative Annex F as enhanced by the
changes in Part 1.

Part 2 enhances TR 24732 to cover all the requirements, plus some basic recommendations, of IEC 15
60559:2011 for decimal floating-point arithmetic. C implementations intending to provide an extension for
decimal floating-point arithmetic supporting IEC 60559-2011 are expected to conform to Part 2.

Part 3 (Interchange and extended types), Part 4 (Supplementary functions), and Part 5 (Supplementary
attributes) cover recommended features of IEC 60559-2011. C implementations intending to provide
extensions for these features are expected to conform to the corresponding Parts.20

DRAFT TECHNICAL SPECIFICATION ISO/IEC/TS 18661-1

© ISO/IEC 2013 – All rights reserved 1

Information Technology — Programming languages, their
environments, and system software interfaces — Floating-point
extensions for C — Part 1: Binary floating-point arithmetic

1 Scope 5

This document, Part 1 of ISO/IEC Technical Specification 18661, extends programming language C to support
binary floating-point arithmetic conforming to ISO/IEC/IEEE 60559:2011. It covers all requirements of IEC
60559 as they pertain to C floating types that use IEC 60559 binary formats.

This document does not cover decimal floating-point arithmetic, nor does it cover most optional features of
IEC 60559. 10

This document is primarily an update to IEC 9899:2011 (C11), normative Annex F (IEC 60559 floating-point
arithmetic). However, it proposes that the new interfaces that are suitable for general implementations be
added in the Library clauses of C11. Also it includes a few auxiliary changes in C11 where the specification is
problematic for IEC 60559 support.

2 Conformance 15

An implementation conforms to Part 1 of Technical Specification 18661 if

a) It meets the requirements for a conforming implementation of C11 with all the changes to C11
specified in Part 1 of Technical Specification 18661; and

b) It defines __STDC_IEC_60559_BFP__ to 201ymmL. 20

3 Normative references

The following referenced documents are indispensable for the application of this document. Only the editions
cited apply.

ISO/IEC 9899:2011, Information technology — Programming languages, their environments and system 25
software interfaces — Programming Language C

ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1

ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point arithmetic
(with identical content to IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic. The Institute of
Electrical and Electronic Engineers, Inc., New York, 2008) 30

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9899:2011 and ISO/IEC/IEEE
60559:2011 and the following apply.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

2 © ISO/IEC 2013 – All rights reserved

4.1
C11
standard ISO/IEC 9899:2011, Information technology — Programming languages, their environments and
system software interfaces — Programming Language C, including Technical Corrigendum 1 (ISO/IEC
9899:2011/Cor. 1:2012) 5

5 C standard conformance

5.1 Freestanding implementations

The following change to C11 expands the conformance requirements for freestanding implementations so that
they might conform to this Part of Technical Specification18661.

Change to C11: 10

Insert after the third sentence of 4#6:

The strictly conforming programs that shall be accepted by a conforming freestanding implementation
that defines __STDC_IEC_60559_BFP__ may also use features in the contents of the standard
headers <fenv.h> and <math.h> and the numeric conversion functions (7.22.1) of the standard
header <stdlib.h>. All identifiers that are reserved when <stdlib.h> is included in a hosted 15
implementation are reserved when it is included in a freestanding implementation.

5.2 Predefined macros

The following changes to C11 obsolesce __STDC_IEC_559__, the current conformance macro for Annex F,
in favor of __STDC_IEC_60559_BFP__, for consistency with other conformance macros and to distinguish its
application to binary floating-point arithmetic. The macro __STDC_IEC_559__ is retained as obsolescent, for 20
compatibility with existing programs.

Changes to C11:

In 6.10.8.3#1, before:

__STDC_IEC_559__ The integer constant 1, intended to indicate conformance to Annex F (IEC
60559 binary floating-point arithmetic). 25

insert:

__STDC_IEC_60559_BFP__ The integer constant 201ymmL, intended to indicate conformance to
Annex F (IEC 60559 binary floating-point arithmetic).

In 6.10.8.3#1, append to the __STDC_IEC_559__ item:

Use of this macro is an obsolescent feature. 30

The following changes to C11 obsolesce __STDC_IEC_559_COMPLEX__, the current conformance macro for
Annex G, in favor of __STDC_IEC_60559_COMPLEX__, for consistency with other conformance macros.

Changes to C11:

In 6.10.8.3#1, after the __STDC_IEC_559__ item, insert the item:

__STDC_IEC_60559_COMPLEX__ The integer constant 201ymmL, intended to indicate conformance 35
to the specifications in annex G (IEC 60559 compatible complex arithmetic).

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 3

In 6.10.8.3#1, append to the __STDC_IEC_559_COMPLEX__ item:

Use of this macro is an obsolescent feature.

5.3 Standard headers

The new identifiers added to C11 library headers by this Part of Technical Specification 18661 are defined or
declared by their respective headers only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined as a macro 5
at the point in the source file where the appropriate header is first included. The following changes to C11 list
these identifiers in each applicable library subclause.

Changes to C11:

After 5.2.4.2.1#1, insert the paragraph:

[1a] The following identifiers are defined only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined 10
as a macro at the point in the source file where <limits.h> is first included:

CHAR_WIDTH USHRT_WIDTH ULONG_WIDTH
SCHAR_WIDTH INT_WIDTH LLONG_WIDTH
UCHAR_WIDTH UINT_WIDTH ULLONG_WIDTH
SHRT_WIDTH LONG_WIDTH 15

After 5.2.4.2.2#6, insert the paragraph:

[6a] The following identifier is defined only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined as a
macro at the point in the source file where <float.h> is first included:

CR_DECIMAL_DIG 20

After 7.6#3, insert the paragraph:

[3a] The following identifiers are defined or declared only if __STDC_WANT_IEC_60559_BFP_EXT__
is defined as a macro at the point in the source file where <fenv.h> is first included:

femode_t fetestexceptflag 25
FE_DFL_MODE fegetmode
FE_SNANS_ALWAYS_SIGNAL fesetmode
fesetexcept

After 7.12#1, insert the paragraph: 30

[1a] The following identifiers are defined or declared only if __STDC_WANT_IEC_60559_BFP_EXT__
is defined as a macro at the point in the source file where <math.h> is first included:

FP_INT_UPWARD FP_FAST_FSUBL
FP_INT_DOWNWARD FP_FAST_DSUBL
FP_INT_TOWARDZERO FP_FAST_FMUL 35
FP_INT_TONEARESTFROMZERO FP_FAST_FMULL
FP_INT_TONEAREST FP_FAST_DMULL
FP_LLOGB0 FP_FAST_FDIV
FP_LLOGBNAN FP_FAST_FDIVL
SNANF FP_FAST_DDIVL 40
SNAN FP_FAST_FFMA
SNANL FP_FAST_FFMAL
FP_FAST_FADD FP_FAST_DFMAL
FP_FAST_FADDL FP_FAST_FSQRT
FP_FAST_DADDL FP_FAST_FSQRTL 45
FP_FAST_FSUB FP_FAST_DSQRTL

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

4 © ISO/IEC 2013 – All rights reserved

iseqsig fmaxmagf ffmal
iscanonical fmaxmagl dfmal
issignaling fminmag fsqrt
issubnormal fminmagf fsqrtl 5
iszero fminmagl dsqrtl
fromfp nextup totalorder
fromfpf nextupf totalorderf
fromfpl nextupl totalorderl
ufromfp nextdown totalordermag 10
ufromfpf nextdownf totalordermagf
ufromfpl nextdownl totalordermagl
fromfpx fadd canonicalize
fromfpxf faddl canonicalizef
fromfpxl daddl canonicalizel 15
ufromfpx fsub getpayload
ufromfpxf fsubl getpayloadf
ufromfpxl dsubl getpayloadl
roundeven fmul setpayload
roundevenf fmull setpayloadf 20
roundevenl dmull setpayloadl
llogb fdiv setpayloadsig
llogbf fdivl setpayloadsigf
llogbl ddivl setpayloadsigl
fmaxmag ffma 25

After 7.20#4, insert the paragraph:

[4a] The following identifiers are defined only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined
as a macro at the point in the source file where <stdint.h> is first included:

INTN_WIDTH UINT_FASTN_WIDTH PTRDIFF_WIDTH 30
UINTN_WIDTH INTPTR_WIDTH SIG_ATOMIC_WIDTH
INT_LEASTN_WIDTH UINTPTR_WIDTH SIZE_WIDTH
UINT_LEASTN_WIDTH INTMAX_WIDTH WCHAR_WIDTH
INT_FASTN_WIDTH UINTMAX_WIDTH WINT_WIDTH

 35
After 7.22#1, insert the paragraph:

[1a] The following identifiers are declared only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined
as a macro at the point in the source file where <stdlib.h> is first included:

strfromd strfromf strfroml
 40
After 7.25#1, insert the paragraph:

[1a] The following identifiers are defined as type-generic macros only if
__STDC_WANT_IEC_60559_BFP_EXT__ is defined as a macro at the point in the source file where
<tgmath.h> is first included:

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 5

roundeven fromfpx fmul
llogb ufromfpx dmul
fmaxmag totalorder fdiv
fminmag totalordermag ddiv
nextup fadd ffma 5
nextdown dadd dfma
fromfp fsub fsqrt
ufromfp dsub dsqrt

6 Revised floating-point standard

C11 Annex F specifies C language support for the floating-point arithmetic of IEC 60559:1989. This document 10
proposes changes to C11 to bring Annex F into alignment with IEC 60559:2011. The changes to C11 below
update the introduction to Annex F to acknowledge the revision to IEC 60559.

Changes to C11:

Change F.1 from:

F.1 Introduction 15

[1] This annex specifies C language support for the IEC 60559 floating-point standard. The IEC
60559 floating-point standard is specifically Binary floating-point arithmetic for microprocessor
systems, second edition (IEC 60559:1989), previously designated IEC 559:1989 and as IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE 754−1985). IEEE Standard for Radix-
Independent Floating-Point Arithmetic (ANSI/IEEE 854−1987) generalizes the binary standard to 20
remove dependencies on radix and word length. IEC 60559 generally refers to the floating-point
standard, as in IEC 60559 operation, IEC 60559 format, etc. An implementation that defines
__STDC_IEC_559__ shall conform to the specifications in this annex.356) Where a binding between
the C language and IEC60559 is indicated, the IEC 60559-specified behavior is adopted by
reference, unless stated otherwise. Since negative and positive infinity are representable in IEC 25
60559 formats, all real numbers lie within the range of representable values.

to:

F.1 Introduction

[1] This annex specifies C language support for the IEC 60559 floating-point standard. The IEC
60559 floating-point standard is specifically Floating-point arithmetic (ISO/IEC/IEEE 60559:2011), 30
also designated as IEEE Standard for Floating-Point Arithmetic (IEEE 754−2008). The IEC 60559
floating-point standard supersedes the IEC 60559:1989 binary arithmetic standard, also designated
as IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754−1985). IEC 60559 generally refers
to the floating-point standard, as in IEC 60559 operation, IEC 60559 format, etc.

[2] The IEC 60559 floating-point standard specifies decimal, as well as binary, floating-point 35
arithmetic. It supersedes IEEE Standard for Radix-Independent Floating-Point Arithmetic (ANSI/IEEE
854−1987), which generalized the binary arithmetic standard (IEEE 754-1985) to remove
dependencies on radix and word length.

[3] An implementation that defines __STDC_IEC_60559_BFP__ to 201ymmL shall conform to the
specifications in this annex.356) Where a binding between the C language and IEC 60559 is 40
indicated, the IEC 60559-specified behavior is adopted by reference, unless stated otherwise.

In footnote 356), change “__STDC_IEC_559__” to “__STDC_IEC_60559_BFP__”.

Note that the last sentence of F.1 which is removed above is inserted into a more appropriate place by a later
change (see 12 below).

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

6 © ISO/IEC 2013 – All rights reserved

7 Types

7.1 Terminology

IEC 60559 now includes a 128-bit binary format as one of its three binary basic formats: binary32, binary64,
and binary128. The binary128 format continues to meet the less specific requirements for a binary64-
extended format, as in the previous IEC 60559. The changes to C11 below reflect the new terminology in IEC 5
60559; these changes are not substantive.

Changes to C11:

In F.2#1, change the three bullets from:

— The float type matches the IEC 60559 single format.
 10

— The double type matches the IEC 60559 double format,

— The long double type matches an IEC 60559 extended format,357) else a non-IEC 60559
extended format, else the IEC 60559 double format.
 15

to:

— The float type matches the IEC 60559 binary32 format.

— The double type matches the IEC 60559 binary64 format.
 20

— The long double type matches the IEC 60559 binary128 format, else an IEC 60559 binary64-
extended format,357) else a non-IEC 60559 extended format, else the IEC 60559 binary64 format.

In F.2#1, change the sentence after the bullet from:

Any non-IEC 60559 extended format used for the long double type shall have more precision than 25
IEC 60559 double and at least the range of IEC 60559 double.358)

to:

Any non-IEC 60559 extended format used for the long double type shall have more precision than
IEC 60559 binary64 and at least the range of IEC 60559 binary64.358)

Change footnote 357) from: 30

357) ‘‘Extended’’ is IEC 60559’s double-extended data format. Extended refers to both the common
80-bit and quadruple 128-bit IEC 60559 formats.

to:

357) IEC 60559 binary64-extended formats include the common 80-bit IEC 60559 format.

In F.2, change the recommended practice from: 35

Recommended practice

[2] The long double type should match an IEC 60559 extended format.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 7

to:

Recommended practice

[2] The long double type should match the IEC 60559 binary128 format, else an IEC 60559
binary64-extended format.

Change footnote 361) from: 5

361) If the minimum-width IEC60559 extended format (64 bits of precision) is supported,
DECIMAL_DIG shall be at least 21. If IEC 60559 double (53 bits of precision) is the widest IEC 60559
format supported, then DECIMAL_DIG shall be at least 17. (By contrast, LDBL_DIG and DBL_DIG are
18 and 15, respectively, for these formats.)

to: 10

361) If the minimum-width IEC 60559 binary64-extended format (64 bits of precision) is supported,
DECIMAL_DIG shall be at least 21. If IEC 60559 binary64 (53 bits of precision) is the widest IEC
60559 format supported, then DECIMAL_DIG shall be at least 17. (By contrast, LDBL_DIG and
DBL_DIG are 18 and 15, respectively, for these formats.)

7.2 Canonical representation 15

IEC 60559 refers to preferred encodings in a format – or, in C terminology, preferred representations of a type
– as canonical. Some types also contain redundant or ill-specified representations, which are non-canonical.
All representations of types with IEC 60559 binary interchange formats are canonical; however, types with IEC
60559 extended formats may have non-canonical encodings. (Types with IEC 60559 decimal interchange
formats, covered in Part 2 of Technical Specification 18661, contain non-canonical redundant 20
representations.)

Changes to C11:

In 5.2.4.2.2#3, change the sentence:

A NaN is an encoding signifying Not-a-Number.

to: 25

A NaN is a value signifying Not-a-Number.

In 5.2.4.2.2 footnote 22, change:

… the terms quiet NaN and signaling NaN are intended to apply to encodings with similar behavior.

to:

… the terms quiet NaN and signaling NaN are intended to apply to values with similar behavior. 30

After 5.2.4.2.2#5, add:

[5a] An implementation may prefer particular representations of values that have multiple
representations in a floating type, 6.2.6.1 not withstanding. The preferred representations of a floating
type, including unique representations of values in the type, are called canonical. A floating type may
also contain non-canonical representations, for example, redundant representations of some or all of 35
its values, or representations that are extraneous to the floating-point model. Typically, floating-point
operations deliver results with canonical representations.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

8 © ISO/IEC 2013 – All rights reserved

In 5.2.4.2.2#5a, attach a footnote to the wording:

An implementation may prefer particular representations of values that have multiple representations
in a floating type, 6.2.6.1 not withstanding.

where the footnote is:

*) The library operations iscanonical and canonicalize distinguish canonical (preferred) 5
representations, but this distinction alone does not imply that canonical and non-canonical
representations are of different values.

In 5.2.4.2.2#5a, attach a footnote to the wording:

A floating type may also contain non-canonical representations, for example, redundant
representations of some or all of its values, or representations that are extraneous to the floating-10
point model.

where the footnote is:

*) Some of the values in the IEC 60559 decimal formats have non-canonical representations (as well
as a canonical representation).

8 Operation binding 15

IEC 60559 includes several new required operations. Table 1 in the change to C11 below shows the complete
mapping of IEC 60559 operations to C operators, functions, and function-like macros. The new IEC 60559
operations map to C functions and function-like macros; no new C operators are proposed.

Change to C11:

Replace F.3: 20

F.3 Operators and functions

[1] C operators and functions provide IEC 60559 required and recommended facilities as listed below.

— The +, −, *, and / operators provide the IEC 60559 add, subtract, multiply, and divide
operations.

— The sqrt functions in <math.h> provide the IEC 60559 square root operation. 25

— The remainder functions in <math.h> provide the IEC 60559 remainder operation. The
remquo functions in <math.h> provide the same operation but with additional information.

— The rint functions in <math.h> provide the IEC 60559 operation that rounds a floating-point
number to an integer value (in the same precision). The nearbyint functions in <math.h>
provide the nearbyinteger function recommended in the Appendix to ANSI/IEEE 854. 30

— The conversions for floating types provide the IEC 60559 conversions between floating-point
precisions.

— The conversions from integer to floating types provide the IEC 60559 conversions from
integer to floating point.

— The conversions from floating to integer types provide IEC 60559-like conversions but always 35
round toward zero.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 9

— The lrint and llrint functions in <math.h> provide the IEC 60559 conversions, which
honor the directed rounding mode, from floating point to the long int and long long int
integer formats. The lrint and llrint functions can be used to implement IEC 60559
conversions from floating to other integer formats.

— The translation time conversion of floating constants and the strtod, strtof, strtold, 5
fprintf, fscanf, and related library functions in <stdlib.h>, <stdio.h>, and
<wchar.h> provide IEC 60559 binary-decimal conversions. The strtold function in
<stdlib.h> provides the conv function recommended in the Appendix to ANSI/IEEE 854.

— The relational and equality operators provide IEC 60559 comparisons. IEC 60559 identifies a
need for additional comparison predicates to facilitate writing code that accounts for NaNs. 10
The comparison macros (isgreater, isgreaterequal, isless, islessequal,
islessgreater, and isunordered) in <math.h> supplement the language operators to
address this need. The islessgreater and isunordered macros provide respectively a
quiet version of the <> predicate and the unordered predicate recommended in the Appendix
to IEC 60559. 15

— The feclearexcept, feraiseexcept, and fetestexcept functions in <fenv.h>
provide the facility to test and alter the IEC 60559 floating-point exception status flags. The
fegetexceptflag and fesetexceptflag functions in <fenv.h> provide the facility to
save and restore all five status flags at one time. These functions are used in conjunction with
the type fexcept_t and the floating-point exception macros (FE_INEXACT, 20
FE_DIVBYZERO, FE_UNDERFLOW, FE_OVERFLOW, FE_INVALID) also in <fenv.h>.

— The fegetround and fesetround functions in <fenv.h> provide the facility to select
among the IEC 60559 directed rounding modes represented by the rounding direction
macros in <fenv.h> (FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO) and
the values 0, 1, 2, and 3 of FLT_ROUNDS are the IEC 60559 directed rounding modes. 25

— The fegetenv, feholdexcept, fesetenv, and feupdateenv functions in <fenv.h>
provide a facility to manage the floating-point environment, comprising the IEC 60559 status
flags and control modes.

— The copysign functions in <math.h> provide the copysign function recommended in the
Appendix to IEC 60559. 30

— The fabs functions in <math.h> provide the abs function recommended in the Appendix to
IEC 60559.

— The unary minus (−) operator provides the unary minus (−) operation recommended in the
Appendix to IEC 60559.

— The scalbn and scalbln functions in <math.h> provide the scalb function recommended 35
in the Appendix to IEC 60559.

— The logb functions in <math.h> provide the logb function recommended in the Appendix to
IEC 60559, but following the newer specifications in ANSI/IEEE 854.

— The nextafter and nexttoward functions in <math.h> provide the nextafter function
recommended in the Appendix to IEC 60559 (but with a minor change to better handle signed 40
zeros).

— The isfinite macro in <math.h> provides the finite function recommended in the
Appendix to IEC 60559.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

10 © ISO/IEC 2013 – All rights reserved

— The isnan macro in <math.h> provides the isnan function recommended in the Appendix to
IEC 60559.

— The signbit macro and the fpclassify macro in <math.h>, used in conjunction with the
number classification macros (FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO), provide the facility of the class function recommended in the Appendix to IEC 5
60559 (except that the classification macros defined in 7.12.3 do not distinguish signaling
from quiet NaNs).

with:

F.3 Operations

[1] C operators, functions, and function-like macros provide the operations required by IEC 60559 as 10
shown in the following table. Specifications for the C facilities are provided in the listed clauses.

Table 1 — Operation binding

IEC 60559 operation C operation Clauses - C11
roundToIntegralTiesToEven roundeven 7.12.9.7a, F.10.6.7a
roundToIntegralTiesAway round 7.12.9.6, F.10.6.6
roundToIntegralTowardZero trunc 7.12.9.8, F.10.6.8
roundToIntegralTowardPositive ceil 7.12.9.1, F.10.6.1
roundToIntegralTowardNegative floor 7.12.9.2, F.10.6.2
roundToIntegralExact rint 7.12.9.4, F.10.6.4
nextUp nextup 7.12.11.5, F.10.8.5
nextDown nextdown 7.12.11.6, F.10.8.6
remainder remainder, remquo 7.12.10.2, F.10.7.2,

7.12.10.3, F.10.7.3
minNum fmin 7.12.12.3, F.10.9.3
maxNum fmax 7.12.12.2, F.10.9.2
minNumMag fminmag 7.12.12.5, F.10.9.5
maxNumMag fmaxmag 7.12.12.4, F.10.9.4
scaleB scalbn, scalbln 7.12.6.13, F.10.3.13
logB logb, ilogb, llogb 7.12.6.11, F.10.3.11,

7.12.6.5, F.10.3.5
7.12.6.6a, F.10.3.6a

addition +, fadd, faddl, daddl 6.5.6, 7.12.13a.1,
F.10.10a

subtraction -, fsub, fsubl, dsubl 6.5.6, 7.12.13a.2,
F.10.10a

multiplication *, fmul, fmull, dmull 6.5.5, 7.12.13a.3,
F.10.10a

division /, fdiv, fdivl, ddivl 6.5.5, 7.12.13a.4,
F.10.10a

squareRoot sqrt, fsqrt, fsqrtl,
dsqrtl

7.12.13a.6, F.10.10a

fusedMultiplyAdd fma, ffma, ffmal, dfmal 7.12.13.1, F.10.10.1,
7.12.13a.5, F.10.10a

convertFromInt cast and implicit conversion 6.3.1.4, 6.5.4
convertToIntegerTiesToEven fromfp, ufromfp 7.12.9.9, F.10.6.9
convertToIntegerTowardZero fromfp, ufromfp 7.12.9.9, F.10.6.9
convertToIntegerTowardPositive fromfp, ufromfp 7.12.9.9, F.10.6.9
convertToIntegerTowardNegative fromfp, ufromfp 7.12.9.9, F.10.6.9
convertToIntegerTiesToAway fromfp, ufromfp, lround,

llround
7.12.9.9, F.10.6.9,
7.12.9.7, F.10.6.7

convertToIntegerExactTiesToEven fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertToIntegerExactTowardZero fromfpx, ufromfpx 7.12.9.10, F.10.6.10

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 11

convertToIntegerExactTowardPositive fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertToIntegerExactTowardNegative fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertToIntegerExactTiesToAway fromfpx, ufromfpx 7.12.9.10, F.10.6.10
convertFormat - different formats cast and implicit conversions 6.3.1.5, 6.5.4
convertFormat - same format canonicalize 7.12.11.7, F.10.8.7
convertFromDecimalCharacter strtod, wcstod, scanf,

wscanf, decimal floating
constants

7.22.1.3, 7.29.4.1.1,
7.21.6.2, 7.29.2.12,
F.5

convertToDecimalCharacter printf, wprintf,
strfromd, strfromf,
strfroml

7.21.6.1, 7.29.2.11,
7.22.1.2a, F.5

convertFromHexCharacter strtod, wcstod, scanf,
wscanf, hexadecimal floating
constants

7.22.1.3, 7.29.4.1.1,
7.21.6.2, 7.29.2.12,
F.5

convertToHexCharacter printf, wprintf,
strfromd, strfromf,
strfroml

7.21.6.1, 7.29.2.11,
7.22.1.2a, F.5

copy memcpy, memmove 7.24.2.1, 7.24.2.2
negate -(x) 6.5.3.3
abs fabs 7.12.7.2, F.10.4.2
copySign copysign 7.12.11.1, F.10.8.1
compareQuietEqual == 6.5.9, F.9.3
compareQuietNotEqual != 6.5.9, F.9.3
compareSignalingEqual iseqsig 7.12.14.7, F.10.11.1
compareSignalingGreater > 6.5.8, F.9.3
compareSignalingGreaterEqual >= 6.5.8, F.9.3
compareSignalingLess < 6.5.8, F.9.3
compareSignalingLessEqual <= 6.5.8, F.9.3
compareSignalingNotEqual ! iseqsig(x) 7.12.14.7, F.10.11.1
compareSignalingNotGreater ! (x > y) 6.5.8, F.9.3
compareSignalingLessUnordered ! (x >= y) 6.5.8, F.9.3
compareSignalingNotLess ! (x < y) 6.5.8, F.9.3
compareSignalingGreaterUnordered ! (x <= y) 6.5.8, F.9.3
compareQuietGreater isgreater 7.12.14.1
compareQuietGreaterEqual isgreaterequal 7.12.14.2
compareQuietLess isless 7.12.14.3
compareQuietLessEqual islessequal 7.12.14.4
compareQuietUnordered isunordered 7.12.14.6
compareQuietNotGreater ! isgreater(x, y) 7.12.14.1
compareQuietLessUnordered ! isgreaterequal(x, y) 7.12.14.2
compareQuietNotLess ! isless(x, y) 7.12.14.3
compareQuietGreaterUnordered ! islessequal(x, y) 7.12.14.4
compareQuietOrdered ! isunordered(x, y) 7.12.14.6
class fpclassify, signbit,

issignaling
7.12.3.1, 7.12.3.6,
7.12.3.7

isSignMinus signbit 7.12.3.6
isNormal isnormal 7.12.3.5
isFinite isfinite 7.12.3.2
isZero iszero 7.12.3.9
isSubnormal issubnormal 7.12.3.8
isInfinite isinf 7.12.3.3
isNaN isnan 7.12.3.4
isSignaling issignaling 7.12.3.7
isCanonical iscanonical 7.12.3.1a
radix FLT_RADIX 5.2.4.2.2
totalOrder totalorder F.10.12.1
totalOrderMag totalordermag F.10.12.2

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

12 © ISO/IEC 2013 – All rights reserved

lowerFlags feclearexcept 7.6.2.1
raiseFlags fesetexcept 7.6.2.3a
testFlags fetestexcept 7.6.2.5
testSavedFlags fetestexceptflag 7.6.2.4a
restoreFlags fesetexceptflag 7.6.2.4
saveAllFlags fegetexceptflag 7.6.2.2
getBinaryRoundingDirection fegetround 7.6.3.1
setBinaryRoundingDirection fesetround 7.6.3.2
saveModes fegetmode 7.6.3.0
restoreModes fesetmode 7.6.3.1a
defaultModes fesetmode(FE_DFL_MODE) 7.6.3.1a, 7.6

[2] The IEC 60559 requirement that certain of its operations be provided for operands of different
formats (of the same radix) is satisfied by C’s usual arithmetic conversions (6.3.1.8) and function-call
argument conversions (6.5.2.2). For example, the following operations take float f and double d
inputs and produce a long double result: 5

(long double)f * d
powl(f, d)

[3] Whether C assignment (6.5.16) (and conversion as if by assignment) to the same format is an IEC
60559 convertFormat or copy operation is implementation-defined, even if <fenv.h> defines the
macro FE_SNANS_ALWAYS_SIGNAL (F.2.1). 10

[4] The unary - operator raises no floating-point exceptions, even if the operand is a signaling NaN.

[5] The C classification macros fpclassify, iscanonical, isfinite, isinf, isnan,
isnormal, issignaling, issubnormal, and iszero provide the IEC 60559 operations indicated
in Table 1 provided their arguments are in the format of their semantic type. Then these macros raise
no floating-point exceptions, even if an argument is a signaling NaN. 15

[6] The C nearbyint functions (7.12.9.3, F.10.6.3) provide the nearbyinteger function recommended
in the Appendix to (superseded) ANSI/IEEE 854.

[7] The C nextafter (7.12.11.3, F.10.8.3) and nexttoward (7.12.11.4, F.10.8.4) functions provide
the nextafter function recommended in the Appendix to (superseded) IEC 60559:1989 (but with a
minor change to better handle signed zeros). 20

[8] The C getpayload, setpayload, and setpayloadsig (F.10.13) functions provide program
access to NaN payloads, defined in IEC 60559.

[9] The macros (7.6) FE_DOWNWARD, FE_TONEAREST, FE_TOWARDZERO, and FE_UPWARD, which are
used in conjunction with the fegetround and fesetround functions and the FENV_ROUND pragma,
represent the IEC 60559 rounding-direction attributes roundTowardNegative, roundTiesToEven, 25
roundTowardZero, and roundTowardPositive, respectively.

[10] The C fegetenv (7.6.4.1), feholdexcept (7.6.4.2), fesetenv (7.6.4.3) and feupdateenv
(7.6.4.4) functions provide a facility to manage the dynamic floating-point environment, comprising the
IEC 60559 status flags and dynamic control modes.

[11] IEC 60559 requires operations with specified operand and result formats. Therefore, math 30
functions that are bound to IEC 60559 operations (see Table 1) must remove any extra range and
precision from arguments or results.

[12] IEC 60559 requires operations that round their result to formats the same as and wider than the
operands, in addition to the operations that round their result to narrower formats (see 7.12.13a).
Operators (+, -, *, and /) whose evaluation formats are wider than the semantic type (5.2.4.2.2) 35

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 13

might not support some of the IEEE 60559 operations, because getting a result in a given format
might require a cast that could introduce an extra rounding error. The functions that round result to
narrower type (7.12.13a) provide the IEC 60559 operations that round result to same and wider (as
well as narrower) formats, in those cases where built-in operators and casts do not. For example,
ddivl(x, y) computes a correctly rounded double divide of float x by float y, regardless of 5
the evaluation method.

9 Floating to integer conversion

IEC 60559 allows but does not require floating to integer type conversions to raise the “inexact” floating-point
exception for non-integer inputs within the range of the integer type. It recommends that implicit conversions
raise “inexact” in these cases. 10

Change to C11:

Replace footnote 360):

360) ANSI/IEEE 854, but not IEC 60559 (ANSI/IEEE 754), directly specifies that floating-to-integer
conversions raise the ‘‘inexact’’ floating-point exception for non-integer in-range values. In those
cases where it matters, library functions can be used to effect such conversions with or without 15
raising the ‘‘inexact’’ floating-point exception. See rint, lrint, llrint, and nearbyint in
<math.h>.

with:

360) IEC 60559 recommends that implicit floating-to-integer conversions raise the ‘‘inexact’’ floating-
point exception for non-integer in-range values. In those cases where it matters, library functions can 20
be used to effect such conversions with or without raising the ‘‘inexact’’ floating-point exception. See
fromfp, ufromfp, fromfpx, ufromfpx, rint, lrint, llrint, and nearbyint in <math.h>.

10 Conversions between floating types and character sequences

10.1 Conversions with decimal character sequences

IEC 60559 now requires correct rounding for conversions between its supported formats and decimal 25
character sequences with up to H decimal digits, where H is defined as follows:

H ≥ M + 3

M = 1+ceiling(p×log10(2))

p is the precision of the widest supported IEC 60559 binary format

M is large enough that conversion from the widest supported format to a decimal character sequence with M 30
decimal digits and back will be the identity function. IEC 60559 also now completely specifies conversions
involving more than H decimal digits. The following changes to C11 satisfy these requirements.

Changes to C11:

Rename F.5 from:

F.5 Binary-decimal conversion 35

to:

F.5 Conversions between binary floating types and decimal character sequences

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

14 © ISO/IEC 2013 – All rights reserved

After F.5#2, insert:

[2a] The <float.h> header defines the macro

CR_DECIMAL_DIG

if and only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined as a macro at the point in the
source file where <float.h> is first included. If defined, CR_DECIMAL_DIG expands to an integral 5
constant expression suitable for use in #if preprocessing directives whose value is a number such
that conversions between all supported types with IEC 60559 binary formats and character
sequences with at most CR_DECIMAL_DIG significant decimal digits are correctly rounded. The value
of CR_DECIMAL_DIG shall be at least DECIMAL_DIG + 3. If the implementation correctly rounds for
all numbers of significant decimal digits, then CR_DECIMAL_DIG shall have the value of the macro 10
UINTMAX_MAX.

[2b] Conversions of types with IEC 60559 binary formats to character sequences with more than
CR_DECIMAL_DIG significant decimal digits shall correctly round to CR_DECIMAL_DIG significant
digits and pad zeros on the right.

[2c] Conversions from character sequences with more than CR_DECIMAL_DIG significant decimal 15
digits to types with IEC 60559 binary formats shall correctly round to an intermediate character
sequence with CR_DECIMAL_DIG significant decimal digits, according to the applicable rounding
direction, and correctly round the intermediate result (having CR_DECIMAL_DIG significant decimal
digits) to the destination type. The “inexact” floating-point exception is raised (once) if either
conversion is inexact. (The second conversion may raise the “overflow” or “underflow” floating-point 20
exception.)

In F.5#2c, attach a footnote to the wording:

The “inexact” floating-point exception is raised (once) if either conversion is inexact.

where the footnote is:

*) The intermediate conversion is exact only if all input digits after the first CR_DECIMAL_DIG digits 25
are 0.

In 5.2.4.2.2#7, change:

All except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate
names for all three floating-point types.

to: 30

All except CR_DECIMAL_DIG (F.5), DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and
FLT_ROUNDS have separate names for all three floating-point types.

10.2 Conversions to character sequences

The following change to C11 allows freestanding implementations to provide the conversions from floating
types to character sequences as required by IEC 60559, without having to support <stdio.h>. 35

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 15

Change to C11:

After 7.22.1.2, add:

7.22.1.2a The strfromd, strfromf, and strfroml functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 5
#include <stdlib.h>
int strfromd (char * restrict s, size_t n, const char * restrict

format, double fp);
int strfromf (char * restrict s, size_t n, const char * restrict

format, float fp); 10
int strfroml (char * restrict s, size_t n, const char * restrict

format, long double fp);

Description

[2] The strfromd, strfromf, and strfroml functions are equivalent to snprintf(s, n, 15
format, fp) (7.21.6.5), except the format string contains only the character %, an optional
precision that does not contain an asterisk *, and one of the conversion specifiers a, A, e, E, f, F, g,
or G, which applies to the type (double, float, or long double) indicated by the function suffix
(rather than by a length modifier). Use of these functions with any other format string results in
undefined behavior. 20

Returns

[3] The strfromd, strfromf, and strfroml functions return the number of characters that would
have been written had n been sufficiently large, not counting the terminating null character. Thus, the
null-terminated output has been completely written if and only if the returned value is less than n.

11 Constant rounding directions 25

IEC 60559 now requires a means for programs to specify constant values for the rounding direction mode for
all standard operations in static parts of code (as specified by the programming language). The following
changes meet this requirement by adding standard pragmas for specifying constant values for the rounding
direction mode. Minor terminology changes in the C11 references to rounding direction modes and the
floating-point environment are needed to distinguish two kinds of rounding direction modes: constant and 30
dynamic.

Changes to C11:

Change 5.1.2.3#5:

[5] When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are 35
unspecified, as is the state of the floating-point environment. The value of any object that is modified
by the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t
becomes indeterminate when the handler exits, as does the state of the floating-point environment if it
is modified by the handler and not restored.

to: 40

[5] When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are
unspecified, as is the state of the dynamic floating-point environment. The value of any object that is
modified by the handler that is neither a lock-free atomic object nor of type volatile

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

16 © ISO/IEC 2013 – All rights reserved

sig_atomic_t becomes indeterminate when the handler exits, as does the state of the dynamic
floating-point environment if it is modified by the handler and not restored.

After 7.6#1, insert the paragraph:

[1a] A floating-point control mode may be constant (7.6.2) or dynamic. The dynamic floating-point
environment includes the dynamic floating-point control modes and the floating-point status flags. 5

Replace 7.6#2:

[2] The floating-point environment has thread storage duration. The initial state for a thread’s floating-
point environment is the current state of the floating-point environment of the thread that creates it at
the time of creation.

with: 10

[2] The dynamic floating-point environment has thread storage duration. The initial state for a thread’s
dynamic floating-point environment is the current state of the dynamic floating-point environment of
the thread that creates it at the time of creation.

Replace 7.6#3:

[3] Certain programming conventions support the intended model of use for the floating-point 15
environment: …

with:

[3] Certain programming conventions support the intended model of use for the dynamic floating-point
environment: …

Replace 7.6#4: 20

[4] The type

fenv_t

represents the entire floating-point environment.

with:

[4] The type 25

fenv_t

represents the entire dynamic floating-point environment.

Replace 7.6#9:

[9] The macro

FE_DFL_ENV 30

represents the default floating-point environment — the one installed at program startup — and has
type “pointer to const-qualified fenv_t”. It can be used as an argument to <fenv.h> functions that
manage the floating-point environment.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 17

with:

[9] The macro

FE_DFL_ENV

represents the default dynamic floating-point environment — the one installed at program startup —
and has type “pointer to const-qualified fenv_t”. It can be used as an argument to <fenv.h> 5
functions that manage the dynamic floating-point environment.

Modify 7.6.1#2 by replacing:

If part of a program tests floating-point status flags, sets floating-point control modes, or runs under
non-default mode settings, but was translated with the state for the FENV_ACCESS pragma ‘‘off’’, the
behavior is undefined. 10

with:

If part of a program tests floating-point status flags or establishes non-default floating-point mode
settings using any means other than the FENV_ROUND pragmas, but was translated with the state for
the FENV_ACCESS pragma ‘‘off’’, the behavior is undefined.

Modify footnote 213) by replacing: 15

In general, if the state of FENV_ACCESS is ‘‘off’’, the translator can assume that default modes are in
effect and the flags are not tested.

with:

In general, if the state of FENV_ACCESS is ‘‘off’’, the translator can assume that the flags are not
tested, and that default modes are in effect, except where specified otherwise by an FENV_ROUND 20
pragma.

Following 7.6.1 "The FENV_ACCESS pragma", insert:

7.6.1a Rounding control pragma

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 25
#include <fenv.h>
#pragma STDC FENV_ROUND direction

Description

[2] The FENV_ROUND pragma provides a means to specify a constant rounding direction for floating-30
point operations within a translation unit or compound statement. The pragma shall occur either
outside external declarations or preceding all explicit declarations and statements inside a compound
statement. When outside external declarations, the pragma takes effect from its occurrence until
another FENV_ROUND pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another FENV_ROUND pragma 35
is encountered (including within a nested compound statement), or until the end of the compound
statement; at the end of a compound statement the static rounding mode is restored to its condition
just before the compound statement. If this pragma is used in any other context, its behavior is
undefined.

[3] direction shall be one of the rounding direction macro names defined in 7.6, or FE_DYNAMIC. If 40
any other value is specified, the behavior is undefined. If no FENV_ROUND pragma is in effect, or the

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

18 © ISO/IEC 2013 – All rights reserved

specified constant rounding mode is FE_DYNAMIC, rounding is according to the mode specified by
the dynamic floating-point environment, which is the dynamic rounding mode that was established
either at thread creation or by a call to fesetround, fesetmode, fesetenv, or feupdateenv. If
the FE_DYNAMIC mode is specified and FENV_ACCESS is “off”, the translator may assume that the
default rounding mode is in effect. 5

[4] Within the scope of an FENV_ROUND directive establishing a mode other than FE_DYNAMIC, all
floating-point operators, implicit conversions (including the conversion of a value represented in a
format wider than its semantic types to its semantic type, as done by classification macros), and
invocations of functions indicated in Table 2 below, for which macro replacement has not been
suppressed (7.1.4), shall be evaluated according to the specified constant rounding mode (as though 10
no constant mode was specified and the corresponding dynamic rounding mode had been
established by a call to fesetround). Invocations of functions for which macro replacement has
been suppressed and invocations of functions other than those indicated in Table 2 shall not be
affected by constant rounding modes — they are affected by (and affect) only the dynamic mode.
Floating constants (6.4.4.2) that occur in the scope of a constant rounding mode shall be interpreted 15
according to that mode.

Table 2 — Functions affected by constant rounding modes

Header Function groups
<math.h> acos, asin, atan, atan2
<math.h> cos, sin, tan
<math.h> acosh, asinh, atanh
<math.h> cosh, sinh, tanh
<math.h> exp, exp2, expm1
<math.h> log, log10, log1p, log2
<math.h> scalbn, scalbln, ldexp
<math.h> cbrt, hypot, pow, sqrt
<math.h> erf, erfc
<math.h> lgamma, tgamma
<math.h> rint, nearbyint, lrint, llrint
<math.h> fdim
<math.h> fma
<math.h> fadd, daddl, fsub, dsubl, fmul, dmull, fdiv, ddivl,

ffma, dfmal, fsqrt, dsqrtl
<stdlib.h> atof, strfromd, strfromf, strfroml, strtod, strtof,

strtold
<wchar.h> wcstod, wcstof, wcstold
<stdio.h> printf and scanf families
<wchar.h> wprintf and wscanf families

Each <math.h> functon listed in Table 2 indicates the family of functions of all supported types (for
example, acosf and acosl as well as acos). 20

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 19

[5] Constant rounding modes (other than FE_DYNAMIC) could be implemented using dynamic
rounding modes as illustrated in the following example:

{
#pragma STDC FENV_ROUND direction
// compiler inserts: 5
// #pragma STDC FENV_ACCESS ON
// int __savedrnd;
// __savedrnd = __swapround(direction);
... operations affected by constant rounding mode ...
// compiler inserts: 10
// __savedrnd = __swapround(__savedrnd);
... operations not affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
... operations affected by constant rounding mode ... 15
// compiler inserts:
// __swapround(__savedrnd);

}

where __swapround is defined by: 20

static inline int __swapround(const int new) {
const int old = fegetround();
fesetround(new);
return old;

} 25

In 7.6.3.1#2, change:

[2] The fegetround function gets the current rounding direction.

to:

[2] The fegetround function gets the current value of the dynamic rounding direction mode. 30

In 7.6.3.1#3, change:

[3] The fegetround function returns the value of the rounding direction macro representing the
current rounding direction or a negative value if there is no such rounding direction macro or the
current rounding direction is not determinable.

to: 35

[3] The fegetround function returns the value of the rounding direction macro representing the
current dynamic rounding direction or a negative value if there is no such rounding direction macro or
the current dynamic rounding direction is not determinable.

In 7.6.3.2#2, change:

[2] The fesetround function establishes the rounding direction represented by its argument round. 40
If the argument is not equal to the value of a rounding direction macro, the rounding direction is not
changed.

to:

[2] The fesetround function sets the dynamic rounding direction mode to the rounding direction
represented by its argument round. If the argument is not equal to the value of a rounding direction 45
macro, the rounding direction is not changed.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

20 © ISO/IEC 2013 – All rights reserved

In 7.6.3.2#3, change:

[3] The fesetround function returns zero if and only if the requested rounding direction was
established.

to:

[3] The fesetround function returns zero if and only if the dynamic rounding direction mode was set 5
to the requested rounding direction.

In 7.6.4.1 Description, change:

[2] The fegetenv function attempts to store the current floating-point environment in the object
pointed to by envp.

to: 10

[2] The fegetenv function attempts to store the current dynamic floating-point environment in the
object pointed to by envp.

In 7.6.4.2 Description, change:

[2] The feholdexcept function saves the current floating-point environment in the object pointed to
by envp 15

to:

[2] The feholdexcept function saves the current dynamic floating-point environment in the object
pointed to by envp

In 7.6.4.3 Description, change:

[2] The fesetenv function attempts to establish the floating-point environment represented by the 20
object pointed to by envp. The argument envp shall point to an object set by a call to fegetenv or
feholdexcept, or equal a floating-point environment macro.

to:

[2] The fesetenv function attempts to establish the dynamic floating-point environment represented
by the object pointed to by envp. The argument envp shall point to an object set by a call to 25
fegetenv or feholdexcept, or equal a dynamic floating-point environment macro.

In 7.6.4.4 Description, change:

[2] The feupdateenv function attempts to save the currently raised floating-point exceptions in its
automatic storage, install the floating-point environment represented by the object pointed to by
envp, and then raise the saved floating-point exceptions. The argument envp shall point to an object 30
set by a call to feholdexcept or fegetenv, or equal a floating-point environment macro.

to:

[2] The feupdateenv function attempts to save the currently raised floating-point exceptions in its
automatic storage, install the dynamic floating-point environment represented by the object pointed to
by envp, and then raise the saved floating-point exceptions. The argument envp shall point to an 35
object set by a call to feholdexcept or fegetenv, or equal a dynamic floating-point environment
macro.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 21

In F.8.1, replace:

[1] IEC 60559 requires that floating-point operations implicitly raise floating-point exception status
flags, and that rounding control modes can be set explicitly to affect result values of floating-point
operations. When the state for the FENV_ACCESS pragma (defined in <fenv.h>) is ‘‘on’’, these
changes to the floating-point state are treated as side effects which respect sequence points.364) 5

with:

[1] IEC 60559 requires that floating-point operations implicitly raise floating-point exception status
flags, and that rounding control modes can be set explicitly to affect result values of floating-point
operations. These changes to the floating-point state are treated as side effects which respect
sequence points.364) 10

Change footnote 364) from:

364) If the state for the FENV_ACCESS pragma is ‘‘off’’, the implementation is free to assume the
floating-point control modes will be the default ones and the floating-point status flags will not be
tested, which allows certain optimizations (see F.9).

to: 15

364) If the state for the FENV_ACCESS pragma is ‘‘off’’, the implementation is free to assume the
dynamic floating-point control modes will be the default ones and the floating-point status flags will
not be tested, which allows certain optimizations (see F.9).

In F.8.2, replace:

[1] During translation the IEC 60559 default modes are in effect: 20

with:

[1] During translation, constant rounding direction modes (7.6.2) are in effect where specified.
Elsewhere, during translation the IEC 60559 default modes are in effect:

Change footnote 365) from:

365) As floating constants are converted to appropriate internal representations at translation time, 25
their conversion is subject to default rounding modes and raises no execution-time floating-point
exceptions (even where the state of the FENV_ACCESS pragma is ‘‘on’’). Library functions, for
example strtod, provide execution-time conversion of numeric strings.

to:

365) As floating constants are converted to appropriate internal representations at translation time, 30
their conversion is subject to constant or default rounding modes and raises no execution-time
floating-point exceptions (even where the state of the FENV_ACCESS pragma is ‘‘on’’). Library
functions, for example strtod, provide execution-time conversion of numeric strings.

In F.8.3, replace:

[1] At program startup the floating-point environment is initialized … 35

with:

[1] At program startup the dynamic floating-point environment is initialized …

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

22 © ISO/IEC 2013 – All rights reserved

In F.8.3, change the second bullet from:

— The rounding direction mode is rounding to nearest.

to:

— The dynamic rounding direction mode is rounding to nearest. 5

12 NaN support

The 2011 update to IEC 60559 retains support for signaling NaNs. Although C11 notes that floating types may
contain signaling NaNs, it does not otherwise specify signaling NaNs. Some unqualified references to NaNs in
C11 do not properly apply to signaling NaNs, so that an implementation could not add signaling NaN support
as an extension without contradicting C11. The goal of the following changes is to allow implementations to 10
conditionally support signaling NaNs as specified in IEC 60559, but to require only minimal support for
signaling NaNs.

Changes to C11:

In 7.12.1#2, after the second sentence, insert:

Whether a signaling NaN input causes a domain error is implementation-defined. 15

After 7.12#5, add:

[5a] The signaling NaN macros

 SNANF
 SNAN
 SNANL 20

each is defined if and only if the respective type contains signaling NaNs (5.2.4.2.2). They expand to
a constant expression of the respective type representing a signaling NaN. If a signaling NaN macro
is used for initializing an object of the same type that has static or thread-local storage duration, the
object is initialized with a signaling NaN value. 25

In 7.12.14, change 4th sentence from:

The following subclauses provide macros that are quiet (non floating-point exception raising) versions
of the relational operators, and other comparison macros that facilitate writing efficient code that
accounts for NaNs without suffering the ‘‘invalid’’ floating-point exception.

to: 30

Subclauses 7.12.14.1 through 7.12.14.6 provide macros that are quiet versions of the relational
operators: the macros do not raise the "invalid" floating-point exception as an effect of quiet NaN
arguments. The comparison macros facilitate writing efficient code that accounts for quiet NaNs
without suffering the ‘‘invalid’’ floating-point exception.

In the second paragraphs of 7.12.14.1 through 7.12.14.5, append to "when x and y are unordered" the phrase 35
"and neither is a signaling NaN".

In 7.12.14.6#2, append to the Description: "The isunordered macro raises no floating-point exceptions if
neither argument is a signaling NaN."

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 23

Change F.2.1 from:

F.2.1 Infinities, signed zeros, and NaNs

[1] This specification does not define the behavior of signaling NaNs.342) It generally uses the term
NaN to denote quiet NaNs. The NAN and INFINITY macros and the nan functions in <math.h>
provide designations for IEC 60559 NaNs and infinities. 5

to:

F.2.1 Infinities and NaNs

[1] Since negative and positive infinity are representable in IEC 60559 formats, all real numbers lie
within the range of representable values (5.2.4.2.2).

[2] The NAN and INFINITY macros and the nan functions in <math.h> provide designations for IEC 10
60559 quiet NaNs and infinities. The SNANF, SNAN, and SNANL macros in <math.h> provide
designations for IEC 60559 signaling NaNs.

[3] This annex does not require the full support for signaling NaNs specified in IEC 60559. This annex
uses the term NaN, unless explicitly qualified, to denote quiet NaNs. Where specification of signaling
NaNs is not provided, the behavior of signaling NaNs is implementation-defined (either treated as an 15
IEC 60559 quiet NaN or treated as an IEC 60559 signaling NaN).

[4] Any operator or <math.h> function that raises an "invalid" floating-point exception, if delivering a
floating type result, shall return a quiet NaN.

[5] In order to support signaling NaNs as specified in IEC 60559, an implementation should adhere to
the following recommended practice. 20

Recommended practice

[6] Any floating-point operator or <math.h> function or macro with a signaling NaN input, unless
explicitly specified otherwise, raises an "invalid" floating-point exception.

[7] NOTE Some functions do not propagate quiet NaN arguments. For example, hypot(x, y)
returns infinity if x or y is infinite and the other is a quiet NaN. The recommended practice in this 25
subclause specifies that such functions (and others) raise the "invalid" floating-point exception if an
argument is a signaling NaN, which also implies they return a quiet NaN in these cases.

[8] The <fenv.h> header defines the macro

FE_SNANS_ALWAYS_SIGNAL

if and only if the implementation follows the recommended practice in this subclause. If defined, 30
FE_SNANS_ALWAYS_SIGNAL expands to the integer constant 1.

In F.4, change the first sentence from:

If the integer type is _Bool, 6.3.1.2 applies and no floating-point exceptions are raised (even for
NaN).

to: 35

If the integer type is _Bool, 6.3.1.2 applies and the conversion raises no floating-point exceptions if
the floating-point value is not a signaling NaN.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

24 © ISO/IEC 2013 – All rights reserved

Append to the end of F.5 the following paragraph:

[4] The fprintf family of functions in <stdio.h> and the fwprintf family of functions in
<wchar.h> should behave as if floating-point operands were passed through the canonicalize
function of the same type.

In F.5#4, attach a footnote to the wording: 5

The fprintf family of functions in <stdio.h> and the fwprintf family of functions in <wchar.h>
should behave as if floating-point operands were passed through the canonicalize function of the
same type.

where the footnote is:

*) This is a recommendation instead of a requirement so that implementations may choose to print 10
signaling NaNs differently from quiet NaNs.

In F.9.2, bullet 1*x and x/1 -> x, replace "are equivalent" with "may be regarded as equivalent".

In F.10#3, change the last sentence:

The other functions in <math.h> treat infinities, NaNs, signed zeros, subnormals, and (provided the
state of the FENV_ACCESS pragma is ‘‘on’’) the floating-point status flags in a manner consistent with 15
the basic arithmetic operations covered by IEC 60559.

to:

The other functions in <math.h> treat infinities, NaNs, signed zeros, subnormals, and (provided the
state of the FENV_ACCESS pragma is ‘‘on’’) the floating-point status flags in a manner consistent with
IEC 60559 operations. 20

After F.10#4, insert:

[4a] The functions bound to operations in IEC 60559 (see Table 1) are fully specified by IEC 60559,
including rounding behaviors and floating-point exceptions.

In F.10, replace paragraphs 8 through 10:

[8] Whether or when library functions raise the ‘‘inexact’’ floating-point exception is unspecified, 25
unless explicitly specified otherwise.

[9] Whether or when library functions raise an undeserved ‘‘underflow’’ floating-point exception is
unspecified.372) Otherwise, as implied by F.8.6, the <math.h> functions do not raise spurious
floating-point exceptions (detectable by the user), other than the ‘‘inexact’’ floating-point exception.

[10] Whether the functions honor the rounding direction mode is implementation-defined, unless 30
explicitly specified otherwise.

with:

[8] Whether or when library functions not bound to operations in IEC 60559 raise the ‘‘inexact’’
floating-point exception is unspecified, unless stated otherwise.

[9] Whether or when library functions not bound to operations in IEC 60559 raise an undeserved 35
‘‘underflow’’ floating-point exception is unspecified.372) Otherwise, as implied by F.8.6, these
functions do not raise spurious floating-point exceptions (detectable by the user), other than the
‘‘inexact’’ floating-point exception.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 25

[10] Whether the functions not bound to operations in IEC 60559 honor the rounding direction mode
is implementation-defined, unless explicitly specified otherwise.

Append to footnote 374):

Note also that this implementation does not handle signaling NaNs as required of implementations
that define FP_SNANS_ALWAYS_SIGNAL. 5

Change footnotes 242) and 243) from:

242) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric,
then the fmax functions choose the numeric value. See F.10.9.2.

243) The fmin functions are analogous to the fmax functions in their treatment of NaNs.

to: 10

242) Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the other
numeric, then the fmax functions choose the numeric value. See F.10.9.2.

243) The fmin functions are analogous to the fmax functions in their treatment of quiet NaNs.

In F.10.3.4, replace paragraphs 2 and 3:

[2] frexp raises no floating-point exceptions. 15

[3] When the radix of the argument is a power of 2, the returned value is exact and is independent of
the current rounding direction mode.

with:

[2] frexp raises no floating-point exceptions if value is not a signaling NaN.

[3] The returned value is independent of the current rounding direction mode. 20

In F.10.4.2, replace paragraph 2:

[2] The returned value is exact and is independent of the current rounding direction mode.

with:

[2] fabs(x) raises no floating-point exceptions, even if x is a signaling NaN. The returned value is
independent of the current rounding direction mode. 25

In F.10.4.5, replace paragraph 1:

[1] sqrt is fully specified as a basic arithmetic operation in IEC 60559. The returned value is
dependent on the current rounding direction mode.

with:

— sqrt(±0) returns ±0. 30

— sqrt(+∞) returns +∞.

— sqrt(x) returns a NaN and raises the ‘‘invalid’’ floating-point exception for x < 0.

The returned value is dependent on the current rounding direction mode.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

26 © ISO/IEC 2013 – All rights reserved

In F.10.6.6#3, attach a footnote to the wording:

The double version of round behaves as though implemented by

where the footnote is:

*) This code does not handle signaling NaNs as required of implementations that define
FP_SNANS_ALWAYS_SIGNAL. 5

In F.10.7.2, replace paragraph 1:

[1] The remainder functions are fully specified as a basic arithmetic operation in IEC 60559.

with:

— remainder(±0, y) returns ±0 for y not zero.

— remainder(x, y) returns a NaN and raises the “invalid” floating-point exception for x infinite or y 10
zero (and neither is a NaN).

— remainder(x, ±∞) returns x for x not infinite.

In F.10.8.1, replace paragraph 2:

[2] The returned value is exact and is independent of the current rounding direction mode.

with: 15

[2] copysign(x, y) raises no floating-point exceptions, even if x or y is a signaling NaN. The
returned value is independent of the current rounding direction mode.

In F.10.9.2, paragraph 3, change the sample implementation for fmax from:

{ return (isgreaterequal(x, y) ||
 isnan(y)) ? x : y; } 20
to:

{
double r;
r = (isgreaterequal(x, y) || isnan(y)) ? x : y;
(void) canonicalize(&r, &r); 25
return r;

}

In G.3#1, replace:

[1] A complex or imaginary value with at least one infinite part is regarded as an infinity (even if its 30
other part is a NaN). …

with:

[1] A complex or imaginary value with at least one infinite part is regarded as an infinity (even if its
other part is a quiet NaN). …

After G.6#4, append the paragraph: 35

[4a] In subsequent subclauses in G.6 "NaN" refers to a quiet NaN. The behavior of signaling NaNs in
Annex G is implementation-defined.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 27

Change footnote 378) from:

378) As noted in G.3, a complex value with at least one infinite part is regarded as an infinity even if
its other part is a NaN.

to:

378) As noted in G.3, a complex value with at least one infinite part is regarded as an infinity even if 5
its other part is a quiet NaN.

13 Integer width macros

C11 clause 6.2.6.2 defines the width of integer types. These widths are needed in order to use the fromfp,
ufromfp, fromfpx, and ufromfpx functions to round to the integer types. The following changes to C11
provide macros for the widths of integer types. On the belief that width macros would be generally useful, the 10
proposal adds them to <limits.h> and <stdint.h>.

Changes to C11:

In 5.2.4.2.1#1, change:

Moreover, except for CHAR_BIT and MB_LEN_MAX, the following shall be replaced by expressions
that have the same type as would an expression that is an object of the corresponding type converted 15
according to the integer promotions.

to:

Moreover, except for CHAR_BIT, MB_LEN_MAX, and the width-of-type macros, the following shall be
replaced by expressions that have the same type as would an expression that is an object of the
corresponding type converted according to the integer promotions. 20

In 5.2.4.2.1#1, insert the following bullets, each after the current bullets for the same type:

— width of type char
CHAR_WIDTH 8

— width of type signed char
SCHAR_WIDTH 8 25

— width of type unsigned char
UCHAR_WIDTH 8

— width of type short int
SHRT_WIDTH 16

— width of type unsigned short int 30
USHRT_WIDTH 16

— width of type int
INT_WIDTH 16

— width of type unsigned int
UINT_WIDTH 16 35

— width of type long int
LONG_WIDTH 32

— width of type unsigned long int
ULONG_WIDTH 32

— width of type long long int 40
LLONG_WIDTH 64

— width of type unsigned long long int
ULLONG_WIDTH 64

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

28 © ISO/IEC 2013 – All rights reserved

In 7.20.2#2, change:

Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives, and this expression shall have the same type as would an expression
that is an object of the corresponding type converted according to the integer promotions.

to: 5

Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives, and, except for the width-of-type macros, this expression shall have the
same type as would an expression that is an object of the corresponding type converted according to
the integer promotions.

In 7.20.2.1, append: 10

— width of exact-width signed integer types
INTN_WIDTH N

— width of exact-width unsigned integer types
UINTN_WIDTH N
 15

In 7.20.2.2, append:

— width of minimum-width signed integer types
INT_LEASTN_WIDTH N

— width of minimum-width unsigned integer types
UINT_LEASTN_WIDTH N 20

In 7.20.2.3, append:

— width of fastest minimum-width signed integer types
INT_FASTN_WIDTH N

— width of fastest minimum-width unsigned integer types 25
UINT_FASTN_WIDTH N

In 7.20.2.4, append:

— width of pointer-holding signed integer type
INTPTR_WIDTH 16 30

— width of pointer-holding unsigned integer type
UINTPTR_WIDTH 16
!

In 7.20.2.5, append:

— width of greatest-width signed integer type 35
INTMAX_WIDTH 64

— width of greatest-width unsigned integer type
UINTMAX_WIDTH 64
!

In 7.20.3#2, insert the following macros, each after the current macros for the same type: 40

PTRDIFF_WIDTH 16
SIG_ATOMIC_WIDTH 8
SIZE_WIDTH 16
WCHAR_WIDTH 8
WINT_WIDTH 16 45

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 29

14 Mathematics <math.h>

The 2011 update to IEC 60559 requires several new operations that are appropriate for <math.h>. Also, in a
few cases, it tightens requirements for functions that are already in C11 <math.h>.

14.1 Nearest integer functions

14.1.1 Round to integer value in floating type 5

IEC 60559 requires a function that rounds a value of floating type to an integer value in the same floating type,
without raising the “inexact” floating-point exception, for each of the rounding methods: to nearest, to nearest
even, upward, downward, and toward zero. The C11 round, ceil, floor, and trunc functions may meet
this requirement for four of the five rounding methods, though are permitted to raise the “inexact” floating-point
exception. The following changes add a function that rounds to nearest and remove the latitude to raise the 10
“inexact” floating-point exception.

Changes to C11:

Change F.10.6.1:

[2] The returned value is independent of the current rounding direction mode.

to: 15

[2] The returned value is exact and is independent of the current rounding direction mode.

In F.10.6.1#3, change:

result = rint(x); // or nearbyint instead of rint

to:

result = nearbyint(x); 20

Delete F.10.6.1#4:

The ceil functions may, but are not required to, raise the ‘‘inexact’’ floating-point exception for finite
non-integer arguments, as this implementation does.

Change F.10.6.2:

[2] The returned value is independent of the current rounding direction mode. 25

to:

[2] The returned value is exact and is independent of the current rounding direction mode.

Delete the second sentence of F.10.6.2#3:

The floor functions may, but are not required to, raise the ‘‘inexact’’ floating-point exception for finite
non-integer arguments, as that implementation does. 30

Change F.10.6.6:

[2] The returned value is independent of the current rounding direction mode.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

30 © ISO/IEC 2013 – All rights reserved

to:

[2] The returned value is exact and is independent of the current rounding direction mode.

Change F.10.6.6#3 from:

[3] The double version of round behaves as though implemented by

#include <math.h> 5
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double round(double x)
{

double result; 10
fenv_t save_env;
feholdexcept(&save_env);
result = rint(x);
if (fetestexcept(FE_INEXACT)) {

fesetround(FE_TOWARDZERO); 15
result = rint(copysign(0.5 + fabs(x), x));

}
feupdateenv(&save_env);
return result;

} 20

The round functions may, but are not required to, raise the ‘‘inexact’’ floating-point exception for finite
non-integer numeric arguments, as this implementation does.

to:

[3] The double version of round behaves as though implemented by 25

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double round(double x)
{ 30

double result;
fenv_t save_env;
feholdexcept(&save_env);
result = rint(x);
if (fetestexcept(FE_INEXACT)) { 35

fesetround(FE_TOWARDZERO);
result = rint(copysign(0.5 + fabs(x), x));
feclearexcept(FE_INEXACT);

}
feupdateenv(&save_env); 40
return result;

}

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 31

After 7.12.9.7, add:

7.12.9.7a The roundeven functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
#include <math.h> 5
double roundeven(double x);
float roundevenf(float x);
long double roundevenl(long double x);

Description 10

[2] The roundeven functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases to even (that is, to the nearest value whose least significant bit 0),
regardless of the current rounding direction.

Returns

[3] The roundeven functions return the rounded integer value. 15

After F.10.6.7, add:

F.10.6.7a The roundeven functions

[1]
— roundeven(±0) returns ±0.
— roundeven(±∞) returns ±∞. 20

[2] The returned value is exact and is independent of the current rounding direction mode.

[3] See the sample implementation for ceil in F.10.6.1.

In F.10.6.8#1, delete the second sentence: The returned value is exact.

Replace F.10.6.8#2: 25

[2] The returned value is independent of the current rounding direction mode. The trunc functions
may, but are not required to, raise the ‘‘inexact’’ floating-point exception for finite non-integer
arguments.

with:

[2] The returned value is exact and is independent of the current rounding direction mode. 30

14.1.2 Convert to integer type

IEC 60559 requires conversion operations from each of its formats to each integer format, signed and
unsigned, for each of five different rounding methods. For each of these it requires an operation that raises the
“inexact” floating-point exception (for non-integer in-range inputs) and an operation that does not raise the
“inexact” floating-point exception. The changes below satisfy this requirement with four new functions that take 35
two extra arguments to represent the rounding direction and the rounding precision.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

32 © ISO/IEC 2013 – All rights reserved

Changes to C11:

After 7.12#6, add:

[6a] The math rounding direction macros

 FP_INT_UPWARD
 FP_INT_DOWNWARD 5
 FP_INT_TOWARDZERO
 FP_INT_TONEARESTFROMZERO
 FP_INT_TONEAREST

represent the rounding directions of the functions ceil, floor, trunc, round, and roundeven, 10
respectively, that convert to integral values in floating-point formats. They expand to integer constant
expressions with distinct values suitable for use as the second argument to the fromfp, ufromfp,
fromfpx, and ufromfpx functions.

After 7.12.9.8, add:

7.12.9.9 The fromfp and ufromfp functions 15

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <stdint.h>
 #include <math.h>
 intmax_t fromfp(double x, int round, unsigned int width); 20
 intmax_t fromfpf(float x, int round, unsigned int width);
 intmax_t fromfpl(long double x, int round, unsigned int width);
 uintmax_t ufromfp(double x, int round, unsigned int width);
 uintmax_t ufromfpf(float x, int round, unsigned int width);
 uintmax_t ufromfpl(long double x, int round, unsigned int width); 25

Description

[2] The fromfp and ufromfp functions round x, using the math rounding direction indicated by
round, to a signed or unsigned integer, respectively, of width bits, and return the result value in the
integer type designated by intmax_t or uintmax_t, respectively. If the value of the round 30
argument is not equal to the value of a math rounding direction macro, the direction of rounding is
unspecified. If the value of width exceeds the width of the function type, the rounding is to the full
width of the function type. The fromfp and ufromfp functions do not raise the “inexact” floating-
point exception. If x is infinite or NaN or rounds to an integral value that is outside the range of any
supported integer type of the specified width, or if width is zero, the functions return an unspecified 35
value and a domain error occurs.

Returns

[3] The fromfp and ufromfp functions return the rounded integer value.

[4] EXAMPLE Upward rounding of double x to type int, without raising the “inexact” floating-point
exception, is achieved by 40

 (int)fromfp(x, FP_INT_UPWARD, INT_WIDTH)

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 33

7.12.9.10 The fromfpx and ufromfpx functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <stdint.h>
 #include <math.h> 5
 intmax_t fromfpx(double x, int round, unsigned int width);
 intmax_t fromfpxf(float x, int round, unsigned int width);
 intmax_t fromfpxl(long double x, int round, unsigned int width);
 uintmax_t ufromfpx(double x, int round, unsigned int width);
 uintmax_t ufromfpxf(float x, int round, unsigned int width); 10
 uintmax_t ufromfpxl(long double x, int round, unsigned int width);

Description

[2] The fromfpx and ufromfpx functions differ from the fromfp and ufromfp functions,
respectively, only in that the fromfpx and ufromfpx functions raise the ‘‘inexact’’ floating-point 15
exception if a rounded result not exceeding the specified width differs in value from the argument x.

Returns

[3] The fromfpx and ufromfpx functions return the rounded integer value.

[4] NOTE Conversions to integer types that are not required to raise the inexact exception can be
done simply by rounding to integral value in floating type and then converting to the target integer 20
type. For example, the conversion of long double x to uint64_t, using upward rounding, is done
by

 (uint64_t)ceill(x)

In 7.12.9.9#2, attach a footnote to the wording:

any supported integer type 25

where the footnote is:

*) For signed types, 6.2.6.2 permits three representations, which differ in whether a value of -(2M),
where M is the number of value bits, can be represented.

After F.10.6.8, add:

F.10.6.9 The fromfp and ufromfp functions 30

[1] The fromfp and ufromfp functions raise the “invalid” floating-point exception and return an
unspecified value if the floating-point argument x is infinite or NaN or rounds to an integral value that
is outside the range of any supported integer type of the specified width.

[2] These functions do not raise the “inexact” floating-point exception.

F.10.6.10 The fromfpx and ufromfpx functions 35

[1] The fromfpx and ufromfpx functions raise the “invalid” floating-point exception and return an
unspecified value if the floating-point argument x is infinite or NaN or rounds to an integral value that
is outside the range of any supported integer type of the specified width.

[2] These functions raise the “inexact” floating-point exception if a valid result differs in value from the
floating-point argument x. 40

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

34 © ISO/IEC 2013 – All rights reserved

14.2 The llogb functions

IEC 60559 requires that its logB operations, for invalid input, return a value outside ±2 × (emax + p -1), where
emax is the maximum exponent and p the precision of the floating-point input format. If the width of the int
type is only 16 bits and the floating type has a 15-bit exponent (like the binary128 format), then the ilogb
functions cannot meet this requirement. The following changes to C11 add the llogb functions, which return 5
long int and hence can satisfy this requirement for the long double types provided by current and
expected implementations.

Changes to C11:

After 7.12#8, add:

[8.a] The macros 10

FP_LLOGB0
FP_LLOGBNAN

expand to integer constant expressions whose values are returned by llogb(x) if x is zero or NaN,
respectively. The value of FP_LLOGB0 shall be LONG_MIN if the value of FP_LOGB0 is INT_MIN, and 15
shall be -LONG_MAX if the value of FP_LOGB0 is –INT_MAX. The value of FP_LLOGBNAN shall be
LONG_MAX if the value of FP_LOGBNAN is INT_MAX, and shall be LONG_MIN if the value of
FP_LOGBNAN is INT_MIN.

After 7.12.6.6, add:

7.12.6.6a The llogb functions 20

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h>
 long int llogb(double x);
 long int llogbf(float x); 25
 long int llogbl(long double x);

Description

[2] The llogb functions extract the exponent of x as a signed long int value. If x is zero they
compute the value FP_LLOGB0; if x is infinite they compute the value LONG_MAX; if x is a NaN they 30
compute the value FP_LLOGBNAN; otherwise, they are equivalent to calling the corresponding logb
function and casting the returned value to type long int. A domain error or range error may occur if
x is zero, infinite, or NaN. If the correct value is outside the range of the return type, the numeric
result is unspecified.

Returns 35

[3] The llogb functions return the exponent of x as a signed long int value.

Forward references: the logb functions (7.12.6.11).

After F.10.3.6, add:

F.10.3.6a The llogb functions

[1] The llogb functions are equivalent to the ilogb functions, except that the llogb functions 40
determine a result in the long int type.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 35

14.3 Max-min magnitude functions

IEC 60559 requires functions that determine which of two inputs has the maximum and minimum magnitude.

Changes to C11:

After 7.12.12.3, add:

7.12.12.4 The fmaxmag functions 5

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h>
 double fmaxmag(double x, double y);
 float fmaxmagf(float x, float y); 10
 long double fmaxmagl(long double x, long double y);

Description

[2] The fmaxmag functions determine the value of their argument whose magnitude is the maximum
of the magnitudes of the arguments: the value of x if |x| > |y|, y if |x| < |y|, and fmax(x, y) 15
otherwise.

Returns

[3] The fmaxmag functions return the value of their argument of maximum magnitude.

7.12.12.5 The fminmag functions

Synopsis 20

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h>
 double fminmag(double x, double y);
 float fminmagf(float x, float y);
 long double fminmagl(long double x, long double y); 25

Description

[2] The fminmag functions determine the value of their argument whose magnitude is the minimum of
the magnitudes of the arguments: the value of x if |x| < |y|, y if |x| > |y|, and fmin(x, y) otherwise.

Returns 30

[3] The fminmag functions return the value of their argument of minimum magnitude.

In 7.12.12.4#2, attach a footnote to the wording:

the value of x if |x| > |y|, y if |x| < |y|, and fmax(x, y) otherwise.

where the footnote is:

*) Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the other 35
numeric, then the fmaxmag functions choose the numeric value. See F.10.9.4.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

36 © ISO/IEC 2013 – All rights reserved

In 7.12.12.5#2, attach a footnote to the wording:

the value of x if |x| < |y|, y if |x| > |y|, and fmin(x, y) otherwise.

where the footnote is:

*) The fminmag functions are analogous to the fmaxmag functions in their treatment of quiet NaNs.

After F.10.9.3, add: 5

F.10.9.4 The fmaxmag functions

[1] If just one argument is a NaN, the fmaxmag functions return the other argument (if both
arguments are NaNs, the functions return a NaN).

[2] The returned value is exact and is independent of the current rounding direction mode.

[3] The body of the fmaxmag function might be 10

{
double ax, ay, r;
ax = fabs(x);
ay = fabs(y);
if (isgreater(ax, ay)) (void)canonicalize(&r, &x); 15
else if (isgreater(ay, ax)) (void)canonicalize(&r, &y);
else r = fmax(x, y);
return r;

}
 20

F.10.9.5 The fminmag functions

[1] The fminmag functions are analogous to the fmaxmag functions (F.10.9.4).

[2] The returned value is exact and is independent of the current rounding direction mode.

14.4 The nextup and nextdown functions

IEC 60559 replaces the previously recommended two-argument nextAfter operation with one-argument 25
nextUp and nextDown operations. C11 supports the nextAfter operation with the nextafter and
nexttoward functions. The following changes to C11 add functions for the new operations and retain the
nextafter and nexttoward functions already in C11.

Changes to C11:

After 7.12.11.4 add: 30

7.12.11.5 The nextup functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
#include <math.h>
double nextup(double x); 35
float nextupf(float x);
long double nextupl(long double x);

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 37

Description

[2] The nextup functions determine the next representable value, in the type of the function, greater
than x. If x is the negative number of least magnitude in the type of x, nextup(x) is −0 if the type
has signed zeros and is 0 otherwise. If x is zero, nextup(x) is the positive number of least
magnitude in the type of x. nextup(HUGE_VAL) is HUGE_VAL. 5

Returns

[3] The nextup functions return the next representable value in the specified type greater than x.

7.12.11.6 The nextdown functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 10
 #include <math.h>
 double nextdown(double x);
 float nextdownf(float x);
 long double nextdownl(long double x);
 15
Description

[2] The nextdown functions determine the next representable value, in the type of the function, less
than x. If x is the positive number of least magnitude in the type of x, nextdown(x) is +0 if the type
has signed zeros and is 0 otherwise. If x is zero, nextdown(x) is the negative number of least
magnitude in the type of x. nextdown(-HUGE_VAL) is -HUGE_VAL. 20

Returns

[3] The nextdown functions return the next representable value in the specified type less than x.

After F.10.8.4, add:

F.10.8.5 The nextup functions

 [1] 25
— nextup(+∞) returns +∞.
— nextup(−∞) returns the largest-magnitude negative finite number in the type of the function.

F.10.8.6 The nextdown functions

[1] 30
— nextdown(+∞) returns the largest-magnitude positive finite number in the type of the function.
— nextdown(−∞) returns −∞.

14.5 Functions that round result to narrower type

IEC 60559 requires add, subtract, multiply, divide, fused multiply-add, and square root operations that round 35
once to a floating-point format independent of the format of the operands. The following changes to C11 add
functions for these operations that round to formats narrower than the operand formats.

Changes to C11:

After 7.12#7, add:

[7a] Each of the macros 40

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

38 © ISO/IEC 2013 – All rights reserved

FP_FAST_FADD
FP_FAST_FADDL
FP_FAST_DADDL
FP_FAST_FSUB
FP_FAST_FSUBL 5
FP_FAST_DSUBL
FP_FAST_FMUL
FP_FAST_FMULL
FP_FAST_DMULL
FP_FAST_FDIV 10
FP_FAST_FDIVL
FP_FAST_DDIVL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_DSQRTL 15

is optionally defined. If defined, it indicates that the corresponding function generally executes about
as fast, or faster, than the corresponding operation of the argument type (with result type the same as
the argument type) followed by conversion to the narrower type. (For FP_FAST_FFMA,
FP_FAST_FFMAL, and FP_FAST_DFMAL, the comparison is to a call to fma or fmal followed by a
conversion, not to separate multiply, add, and conversion.) If defined, these macros expand to the 20
integer constant 1.

After 7.12.13, add:

7.12.13a Functions that round result to narrower type

7.12.13a.1 Add and round to narrower type

Synopsis 25

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h>
 float fadd(double x, double y);
 float faddl(long double x, long double y);
 double daddl(long double x, long double y); 30

Description

[2] These functions compute the sum x + y, rounded to the type of the function. They compute the
sum (as if) to infinite precision and round once to the result format, according to the current rounding
mode. A range error may occur for finite arguments. A domain error may occur for infinite arguments. 35

Returns

[3] These functions return the sum x + y, rounded to the type of the function.

7.12.13a.2 Subtract and round to narrower type

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 40
 #include <math.h>
 float fsub(double x, double y);
 float fsubl(long double x, long double y);
 double dsubl(long double x, long double y);
 45

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 39

Description

[2] These functions compute the difference x − y, rounded to the type of the function. They compute
the difference (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error may occur for infinite
arguments. 5

Returns

[3] These functions return the difference x − y, rounded to the type of the function.

7.12.13a.3 Multiply and round to narrower type

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 10
 #include <math.h>
 float fmul(double x, double y);
 float fmull(long double x, long double y);
 double dmull(long double x, long double y);
 15
Description

[2] These functions compute the product x × y, rounded to the type of the function. They compute the
product (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error occurs for one infinite
argument and one zero argument. 20

Returns

[3] These functions return the product of x × y, rounded to the type of the function.

7.12.13a.4 Divide and round to narrower type

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 25
 #include <math.h>
 float fdiv(double x, double y);
 float fdivl(long double x, long double y);
 double ddivl(long double x, long double y);
 30
Description

[2] These functions compute the quotient x ÷ y, rounded to the type of the function. They compute the
quotient (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error occurs for either both
arguments infinite or both arguments zero. A pole error occurs for a finite x and a zero y. 35

Returns

[3] These functions return the quotient x ÷ y, rounded to the type of the function.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

40 © ISO/IEC 2013 – All rights reserved

7.12.13a.5 Floating multiply-add rounded to narrower type

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h>
 float ffma(double x, double y, double z); 5
 float ffmal(long double x, long double y, long double z);
 double dfmal(long double x, long double y, long double z);

Description

[2] These functions compute (x × y) + z, rounded to the type of the function. They compute (x × y) + 10
z to infinite precision and round once to the result format, according to the current rounding mode. A
range error may occur for finite arguments. A domain error may occur for an infinite argument.

Returns

[3] These functions return (x × y) + z, rounded to the type of the function.

7.12.13a.6 Square root rounded to narrower type 15

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h>
 float fsqrt(double x);
 float fsqrtl(long double x); 20
 double dsqrtl(long double x);

Description

[2] These functions compute the square root of x, rounded to the type of the function. They compute
the square root (as if) to infinite precision and round once to the result format, according to the current 25
rounding mode. A range error may occur for finite positive arguments. A domain error occurs if the
argument is less than zero.

Returns

[3] These functions return the square root of x, rounded to the type of the function.

After F.10.10 add: 30

F.10.10a Functions that round result to narrower type

[1] The functions that round their result to narrower type (7.12.13a) are fully specified in IEC 60559.
The returned value is dependent on the current rounding direction mode.

14.6 Comparison macros

IEC 60559 requires an extensive set of comparison operations. C11’s built-in equality and relational operators 35
and quiet comparison macros and their negations (!) support all these required operations, except for
compareSignalingEqual and compareSignalingNotEqual. The following changes to C11 provide a function-like
macro for compareSignalingEqual. The negation of the macro provides compareSignalingNotEqual. (See
Table 1.)

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 41

Changes to C11:

After 7.12.14.6, add:

7.12.14.7 The iseqsig macro

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 5
 #include <math.h>
 int iseqsig(real-floating x, real-floating y);

Description

[2] The iseqsig macro determines whether its arguments are equal. If an argument is a NaN, a 10
domain error occurs for the macro, as if a domain error occurred for a function (7.12.1).

Returns

[3] The iseqsig macro returns 1 if its arguments are equal and 0 otherwise.

After F.10.11, add:

F.10.11.1 The iseqsig macro 15

[1] The equality operator == and the iseqsiq macro produce equivalent results, except that the
iseqsig macro raises the “invalid” floating-point exception if an argument is a NaN.

14.7 Classification macros

IEC 60559 requires several classification operations, all but four of which are already supported in C11 as
function-like macros. The changes to C11 below support the remaining four. 20

Changes to C11:

After 7.12.3.1, add:

7.12.3.1a The iscanonical macro

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 25
 #include <math.h>
 int iscanonical(real-floating x);

Description

[2] The iscanonical macro determines whether its argument value is canonical (5.2.4.2.2). First, 30
an argument represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.

Returns

[3] The iscanonical macro returns a nonzero value if and only if its argument is canonical.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

42 © ISO/IEC 2013 – All rights reserved

At the end of 7.12.3.6, add:

7.12.3.7 The issignaling macro

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h> 5
 int issignaling(real-floating x);

Description

[2] The issignaling macro determines whether its argument value is a signaling NaN.

Returns 10

[3] The issignaling macro returns a nonzero value if and only if its argument is a signaling NaN.

7.12.3.8 The issubnormal macro

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h> 15
 int issubnormal(real-floating x);

Description

[2] The issubnormal macro determines whether its argument value is subnormal. First, an
argument represented in a format wider than its semantic type is converted to its semantic type. Then 20
determination is based on the type of the argument.

Returns

[3] The issubnormal macro returns a nonzero value if and only if its argument is subnormal.

7.12.3.9 The iszero macro

Synopsis 25

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h>
 int iszero(real-floating x);

Description 30

[2] The iszero macro determines whether its argument value is (positive, negative, or unsigned)
zero. First, an argument represented in a format wider than its semantic type is converted to its
semantic type. Then determination is based on the type of the argument.

Returns

[3] The iszero macro returns a nonzero value if and only if its argument is zero. 35

In 7.12.3.7#2, attach a footnote to the wording:

The issignaling macro determines whether its argument value is a signaling NaN.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 43

where the footnote is:

*) F.3 specifies that issignaling (and all the other classification macros), raise no floating-point
exception if the argument is a variable, or any other expression whose value is represented in the
format of the its semantic type, even if the value is a signaling NaN.

14.8 Total order functions 5

IEC 60559 requires a totalOrder operation, which it defines as follows:

“totalOrder(x, y) imposes a total ordering on canonical members of the format of x and y:

a) If x < y, totalOrder(x, y) is true.
b) If x > y, totalOrder(x, y) is false. 10
c) If x = y:

1) totalOrder(−0, +0) is true.
2) totalOrder(+0, −0) is false.
3) If x and y represent the same floating-point datum:

i) If x and y have negative sign, totalOrder(x, y) is true if and only if the exponent of x ≥ the 15
exponent of y
ii) otherwise totalOrder(x, y) is true if and only if the exponent of x ≤ the exponent of y.

d) If x and y are unordered numerically because x or y is NaN:
1) totalOrder(−NaN, y) is true where −NaN represents a NaN with negative sign bit and y is a
 floating-point number. 20
2) totalOrder(x, +NaN) is true where +NaN represents a NaN with positive sign bit and x is a
floating-point number.
3) If x and y are both NaNs, then totalOrder reflects a total ordering based on:

i) negative sign orders below positive sign
ii) signaling orders below quiet for +NaN, reverse for −NaN 25
iii) lesser payload, when regarded as an integer, orders below greater payload for +NaN,
reverse for −NaN.”

IEC 60559:2011 also requires a totalOrderMag operation which is the totalOrder of the absolute values of the
operands. The following changes to C11 provide these operations. 30

Changes to C11:

After F.10.11, add:

F.10.12 Total order functions

[1] This annex specifies the total order functions required by IEC 60559.

F.10.12.1 The totalorder functions 35

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
#include <math.h>

 int totalorder(double x, double y);
 int totalorderf(float x, float y); 40
 int totalorderl(long double x, long double y);

Description

[2] The totalorder functions determine whether the total order relationship, defined by IEC 60559,
is true for the ordered pair of its arguments x, y. These functions are fully specified in IEC 60559. 45
These functions are independent of the current rounding direction mode and raise no floating-point
exceptions, even if an argument is a signaling NaN.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

44 © ISO/IEC 2013 – All rights reserved

Returns

[3] The totalorder functions return nonzero if and only if the total order relation is true for the
ordered pair of its arguments x, y.

F.10.12.2 The totalordermag functions

Synopsis 5

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 int totalordermag(double x, double y);
 int totalordermagf(float x, float y);
 int totalordermagl(long double x, long double y);
 10
Description

[2] The totalordermag functions determine whether the total order relationship, defined by IEC
60559, is true for the ordered pair of the magnitudes of its arguments x, y. These functions are fully
specified in IEC 60559. These functions are independent of the current rounding direction mode and
raise no floating-point exceptions, even if an argument is a signaling NaN. 15

Returns

[3] The totalordermag functions return nonzero if and only if the total order relation is true for the
ordered pair of the magnitudes of it arguments x, y.

In F.10.12#1, attach a footnote to the wording:

These functions are fully specified in IEC 60559. 20

where the footnote is:

*) The total order functions are specified only in Annex F because they depend on the details of IEC
60559 formats.

14.9 Canonicalize functions

IEC 60559 requires an arithmetic convertFormat operation from each format to itself. This operation produces 25
a canonical encoding and, for a signaling NaN input, raises the “invalid” floating-point exception and delivers a
quiet NaN. C assignment (and conversion as if by assignment) to the same format may be implemented as a
convertFormat operation or as a copy operation. The changes to C11 below provide the IEC 60559
convertFormat operation.

Changes to C11: 30

As the last subclause of 7.12.11 (after 7.12.11.5-6 added above), add:

7.12.11.7 The canonicalize functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h> 35
 int canonicalize(double * cx, const double * x);
 int canonicalizef(float * cx, const float * x);
 int canonicalizel(long double * cx, const long double * x);

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 45

Description

[2] The canonicalize functions attempt to produce a canonical version of the floating-point
representation in the object pointed to by the argument x, as if to a temporary object of the specified
type, and store the canonical result in the object pointed to by the argument cx. If the input *x is a
signaling NaN, the canonicalize functions are intended to store a canonical quiet NaN. If a 5
canonical result is not produced the object pointed to by cx in unchanged.

Returns

[3] The functions return zero if a canonical result is stored in the object pointed to by cx. Otherwise
they return a nonzero value.

In 7.12.11.7#2, attach a footnote to the wording: 10

and store the canonical result in the object pointed to by the argument cx.

where the footnote is:

*) Arguments x and cx may point to the same object.

After F.10.8.6 (added above), add:

F.10.8.7 The canonicalize functions 15

[1] The canonicalize functions produce the canonical version of the representation in the object
pointed to by the argument x. If the input *x is a signaling NaN, the "invalid" floating-point exception
is raised and a (canonical) quiet NaN (which should be the canonical version of that signaling NaN
made quiet) is produced. For quiet NaN, infinity, and finite inputs, the functions raise no floating-point
exceptions. 20

In F.10.8.7#1, attach a footnote to the wording:

The canonicalize functions produce

where the footnote is:

*) As if *x * 1e0 were computed.

14.10 NaN functions 25

IEC 60559 defines the payload of a NaN to be a certain part of the NaN’s significand interpreted as an integer.
The payload is intended to provide implementation-defined diagnostic information about the NaN, such as
where or how the NaN was created. The following change to C11 provides functions to get and set the NaN
payloads defined in IEC 60559.

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

46 © ISO/IEC 2013 – All rights reserved

 Change to C11:

After F.10.12 (added above), add:

F.10.13 Payload functions

IEC 60559 defines the payload of a quiet or signaling NaN as an integer value encoded in the
significand. The payload is intended to represent implementation-defined diagnostic information about 5
the NaN. The functions in this clause enable getting and setting payloads.

F.10.13.1 The getpayload functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
#include <math.h> 10
double getpayload(const double *x);
float getpayloadf(const float *x);
long double getpayloadl(const long double *x);

Description 15

[2] The getpayload functions extract the integer value of the payload of a NaN input and return the
integer as a floating-point value. The sign of the returned integer is positive. If *x is not a NaN, the
return result is unspecified. These functions raise no floating-point exceptions, even if *x is a
signaling NaN.

Returns 20

[3] The functions return a floating-point representation of the integer value of the payload of the NaN
input.

F.10.13.2 The setpayload functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__ 25
 #include <math.h>
 int setpayload(double *res, double pl);
 int setpayloadf(float *res, float pl);
 int setpayloadl(long double *res, long double pl);
 30
Description

[2] The setpayload functions create a quiet NaN with the payload specified by pl and a zero sign
bit and store that NaN in the object pointed to by *res. If pl is not a positive floating-point integer
representing a valid payload, *res is set to positive zero.

Returns 35

[3] If the functions stored the specified NaN, the functions return a zero value, otherwise a non-zero
value (and *res is set to zero).

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 47

F.10.13.3 The setpayloadsig functions

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <math.h>
 int setpayloadsig(double *res, double pl); 5
 int setpayloadsigf(float *res, float pl);
 int setpayloadsigl(long double *res, long double pl);

Description

[2] The setpayloadsig functions create a signaling NaN with the payload specified by pl and a 10
zero sign bit and store that NaN in the object pointed to by *res. If pl is not a positive floating-point
integer representing a valid payload, *res is set to positive zero.

Returns

[3] If the functions stored the specified NaN, the functions return a zero value, otherwise a non-zero
value (and *res is set to zero). 15

15 The floating-point environment <fenv.h>

15.1 The fesetexcept function

IEC 60559 requires a raiseFlags operation that sets floating-point exception flags. Unlike the C
feraiseexcept function in <fenv.h>, the raiseFlags operation does not cause side effects (notably traps)
as could occur if the exceptions resulted from arithmetic operations. The following changes to C11 provide the 20
raiseFlags operation.

Changes to C11:

After 7.6.2.3, add:

7.6.2.3a The fesetexcept function

Synopsis 25

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <fenv.h>
 int fesetexcept(int excepts);

Description 30

[2] The fesetexcept function attempts to set the supported floating-point exception flags
represented by its argument. This function does not clear any floating-point exception flags. This
function changes the state of the floating-point exception flags, but does not cause any other side
effects that might be associated with raising floating-point exceptions.

Returns 35

[3] The fesetexcept function returns zero if all the specified exceptions were successfully set or if
the excepts argument is zero. Otherwise, it returns a nonzero value.

In 7.6.2.3a#2, attach a footnote to the wording:

but does not cause any other side effects that might be associated with raising floating-point
exceptions. 40

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

48 © ISO/IEC 2013 – All rights reserved

where the footnote is:

*) Enabled traps for floating-point exceptions are not taken.

15.2 The fetestexceptflag function

IEC 60559 requires a testSavedFlags operation to test saved representations of floating-point exception flags.
This differs from the C fetestexcept function in <fenv.h> which tests floating-point exception flags 5
directly. The following change to C11 provides the testSavedFlags operation.

Change to C11:

After 7.6.2.4, add:

7.6.2.4a The fetestexceptflag function

Synopsis 10

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <fenv.h>
 int fetestexceptflag(const fexcept_t * flagp, int excepts);

Description 15

[2] The fetestexceptflag determines which of a specified subset of the floating-point exception
flags are set in the object pointed to by flagp. The value of *flagp shall have been set by a
previous call to fegetexceptflag. The excepts argument specifies the floating-point status flags
to be queried.

Returns 20

[3] The fetestexcept function returns the value of the bitwise OR of the floating-point exception
macros included in excepts corresponding to the floating-point exceptions set in *flagp.

15.3 Control modes

IEC 60559 requires a saveModes operation that saves all the user-specifiable dynamic floating-point modes
supported by the implementation, including dynamic rounding direction and trap enablement modes. The 25
following changes to C11 support this operation.

Changes to C11:

After 7.6#5, add:

[5a] The type

 femode_t 30

represents the collection of dynamic floating-point control modes supported by the implementation,
including the dynamic rounding direction mode.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 49

After 7.6#7, add:

[7a] The macro

 FE_DFL_MODE

represents the default state for the collection of dynamic floating-point control modes supported by
the implementation - and has type “pointer to const-qualified femode_t”. Additional implementation-5
defined states for the dynamic mode collection, with macro definitions beginning with FE_ and an
uppercase letter, and having type ‘‘pointer to const-qualified femode_t’’, may also be specified by
the implementation.

Rename 7.6.3 from:

7.6.3 Rounding 10

to:

7.6.3 Rounding and other control modes

Append to 7.6.3#1:

The fegetmode and fesetmode functions manage all the implementation’s dynamic floating-point
control modes collectively. 15

Before 7.6.3.1, insert:

7.6.3.0 The fegetmode function

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
#include <fenv.h> 20
int fegetmode(femode_t *modep);

Description

[2] The fegetmode function attempts to store all the dynamic floating-point control modes in the
object pointed to by modep. 25

Returns

[3] The fegetmode function returns zero if the modes were successfully stored. Otherwise, it returns
a nonzero value.

After 7.6.3.1, add:

7.6.3.1a The fesetmode function 30

Synopsis

[1] #define __STDC_WANT_IEC_60559_BFP_EXT__
 #include <fenv.h>
 int fesetmode(const fenv_t *modep);
 35

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

50 © ISO/IEC 2013 – All rights reserved

Description

[2] The fesetmode function attempts to establish the dynamic floating-point modes represented by
the object pointed to by modep. The argument modep shall point to an object set by a call to
fegetmode, or equal FE_DFL_MODE or a dynamic floating-point mode state macro defined by the
implementation. 5

Returns

[3] The fesetmode function returns zero if the modes were successfully established. Otherwise, it
returns a nonzero value.

16 Type-generic math <tgmath.h>

The following changes to C11 enhance the specification for type-generic math macros to accommodate 10
functions and the constant rounding mode pragma in this Part of Technical Specification 18661.

<tgmath.h> is not intended to define type-generic macros associated with functions that have not been
declared for lack of a defined __STDC_WANT_IEC_60559_BFP_EXT__ macro.

Changes to C11:

In 7.25#2, change: 15

For each such function, except modf, there is a corresponding type-generic macro.

to:

For each such function, except modf, setpayload, and setpayloadsig, there is a corresponding
type-generic macro.

In 7.25#3, replace: 20

[3] Use of the macro invokes a function whose generic parameters have the corresponding real type
determined as follows:

with:

[3] Except for the macros for functions that round result to a narrower type (7.12.13a), use of the
macro invokes a function whose generic parameters have the corresponding real type determined as 25
follows:

In 7.25#5, replace:

For each unsuffixed function in <math.h> without a c-prefixed counterpart in <complex.h> (except
modf),

with: 30

For each unsuffixed function in <math.h> without a c-prefixed counterpart in <complex.h> (except
modf, setpayload, setpayloadsig, and canonicalize),

In 7.25#5, include in the list of type-generic macros: roundeven, nextup, nextdown, fminmag, fmaxmag,
llogb, fromfp, ufromfp, fromfpx, ufromfpx, totalorder, and totalordermag.

WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1

© ISO/IEC 2013 – All rights reserved 51

After 7.25#6, add:

[6a] The functions that round result to a narrower type have type-generic macros whose names are
obtained by omitting any f or l suffix from the function names. Thus, the macros are:

fadd fmul ffma
dadd dmul dfma 5
fsub fdiv fsqrt
dsub ddiv dsqrt

All arguments are generic. If any argument is not real, use of the macro results in undefined behavior.
If any argument has type long double, or if the macro prefix is d, the function invoked has the 10
name of the macro with an l suffix. Otherwise, the function invoked has the name of the macro (with
no suffix).

[6b] A type-generic macro corresponding to a function indicated in Table 2 is affected by constant
rounding modes (7.6.2). Note that the type-generic macro definition in the example in 6.5.1.1 does
not conform to this specification. A conforming macro could be implemented as follows: 15

#define cbrt(X) _Generic((X), \
 long double: cbrtl(X), \
 default: _Roundwise_cbrt(X), \
 float: cbrtf(X) \
) 20

where _Roundwise_cbrt() is equivalent to cbrt() invoked without macro-replacement
suppression.

In 7.25#7, append to the table:

fsub(f, ld) fsubl(f, ld) 25
fdiv(d, n) fdiv(d, n), the function
dfma(f, d, ld) dfmal(f, d, ld)
dadd(f, f) daddl(f, f)
dsqrt(dc) undefined behavior

 30

ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778

52 © ISO/IEC 2013 – All rights reserved

Bibliography

[1] ISO/IEC 9899:2011, Information technology — Programming languages, their environments and
system software interfaces — Programming Language C

[2] ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1

[3] ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point 5
arithmetic

[4] ISO/IEC TR 24732:2009, Information technology – Programming languages, their environments and
system software interfaces – Extension for the programming language C to support decimal floating-
point arithmetic

[5] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems, second edition 10

[6] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic

[7] IEEE 754−1985, IEEE Standard for Binary Floating-Point Arithmetic

[8] IEEE 854−1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic

