
SC22/WG11 N470���2

DRAFT INTERNATIONAL ISO/IEC
STANDARD WD 10967-3

WD for the First edition

Date: 2000-11-26

Information technology |

Language independent arithmetic |

Part 3: Complex
oating point arithmetic and
complex elementary numerical functions

Technologies de l'information |
Arithm�etique ind�ependante des languages |

Partie 3: Arithm�etique des nombres en virgule
ottante complexe et
fonctions num�eriques �el�ementaires complexe

EDITOR'S WORKING DRAFT
November 27, 2000 9:52

Editor:
Kent Karlsson
IMI, Industri-Matematik International
Kungsgatan 12
SE-411 19 G�oteborg
SWEDEN
Telephone: +46-31 10 22 44
Facsimile: +46-31 13 13 25
E-mail: keka@im.se

Reference number
ISO/IEC WD 10967-3.1:2000(E)

ISO/IEC WD 10967-3.1:2000(E) Working draft

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO.
Except as permitted under the applicable laws of the user's country, neither this ISO draft
nor any extract from it may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, photocopying, recording or otherwise, without
prior written permission being secured.

Requests for permission to reproduce should be addressed to ISO at the address below or
ISO's member body in the country of the requester.

Copyright Manager
ISO Central Secretatiat
1 rue de Varemb�e
CH-1211 Gen�eve 20
Switzerland

tel. +41 22 749 0111
fax. +41 22 734 1079
e-mail: iso@iso.ch

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ii

Working draft ISO/IEC WD 10967-3.1:2000(E)

Contents

Foreword . vii
Introduction . viii

1 Scope 1
1.1 Inclusions . 1
1.2 Exclusions . 2

2 Conformity 2

3 Normative references 3

4 Symbols and de�nitions 4
4.1 Symbols . 4

4.1.1 Sets and intervals . 4
4.1.2 Operators and relations . 4
4.1.3 Mathematical functions . 4
4.1.4 Datatypes and exceptional values . 4

4.2 De�nitions of terms . 5

5 Speci�cations for complex datatypes and operations 8
5.1 Complex integer datatypes and operations . 8

5.1.1 The complex integer result helper function 9
5.1.2 Complex integer operations . 9

5.2 Complex
oating point datatypes and operations 11
5.2.1 The complex
oating point result helper functions 11
5.2.2 Basic arithmetic for complex
oating point 12
5.2.3 Complex multiplication and division . 14

5.3 Elementary transcendental complex
oating point operations 15
5.3.1 Operations for exponentiations and logarithms 15

5.3.1.1 Natural exponentiation . 15
5.3.1.2 Complex exponentiation of argument base 16
5.3.1.3 Complex square root . 16
5.3.1.4 Natural logarithm . 17
5.3.1.5 Argument base logarithm . 18

5.3.2 Operations for radian trigonometric elementary functions 18
5.3.2.1 Radian angle normalisation . 18
5.3.2.2 Radian sine . 19
5.3.2.3 Radian cosine . 19
5.3.2.4 Radian tangent . 20
5.3.2.5 Radian cotangent . 21
5.3.2.6 Radian secant . 21
5.3.2.7 Radian cosecant . 22
5.3.2.8 Radian arc sine . 23
5.3.2.9 Radian arc cosine . 24
5.3.2.10 Radian arc tangent . 25
5.3.2.11 Radian arc cotangent . 26
5.3.2.12 Radian arc secant . 27
5.3.2.13 Radian arc cosecant . 27

5.3.3 Operations for hyperbolic elementary functions 28
5.3.3.1 Hyperbolic normalisation . 28
5.3.3.2 Hyperbolic sine . 29

iii

ISO/IEC WD 10967-3.1:2000(E) Working draft

5.3.3.3 Hyperbolic cosine . 29
5.3.3.4 Hyperbolic tangent . 29
5.3.3.5 Hyperbolic cotangent . 29
5.3.3.6 Hyperbolic secant . 30
5.3.3.7 Hyperbolic cosecant . 30
5.3.3.8 Inverse hyperbolic sine . 30
5.3.3.9 Inverse hyperbolic cosine . 30
5.3.3.10 Inverse hyperbolic tangent . 31
5.3.3.11 Inverse hyperbolic cotangent . 31
5.3.3.12 Inverse hyperbolic secant . 31
5.3.3.13 Inverse hyperbolic cosecant . 31

5.4 Operations for conversion between numeric datatypes 32
5.4.1 Integer to complex integer conversions . 32
5.4.2 Floating point to complex
oating point conversions 32

6 Noti�cation 32
6.1 Continuation values . 33

7 Relationship with language standards 33

8 Documentation requirements 34

Annex A (normative) Partial conformity 37
A.1 Maximum error relaxation . 37
A.2 Extra accuracy requirements relaxation . 37
A.3 Partial conformity to part 1 or to part 2 . 37

Annex B (informative) Rationale 39
B.1 Scope . 39

B.1.1 Inclusions . 39
B.1.2 Exclusions . 39

B.2 Conformity . 40
B.3 Normative references . 40
B.4 Symbols and de�nitions . 40

B.4.1 Symbols . 40
B.4.1.1 Sets and intervals . 40
B.4.1.2 Operators and relations . 40
B.4.1.3 Mathematical functions . 40
B.4.1.4 Datatypes and exceptional values 41

B.4.2 De�nitions of terms . 41
B.5 Speci�cations for the complex datatypes and operations 42

Annex C (informative) Example bindings for speci�c languages 43
C.1 Ada . 44
C.2 C . 48
C.3 C++ . 52
C.4 Fortran . 54
C.5 Haskell . 56
C.6 Java . 58
C.7 Common Lisp . 60
C.8 ISLisp . 62
C.9 Modula-2 . 67
C.10 PL/I . 69

iv

Working draft ISO/IEC WD 10967-3.1:2000(E)

C.11 SML . 71

Annex D (informative) Bibliography 75

v

ISO/IEC WD 10967-3.1:2000(E) Working draft

vi

Working draft ISO/IEC WD 10967-3.1:2000(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialised system for world-wide standardization. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular �elds of
technical activity. ISO and IEC technical committees collaborate in �elds of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

International Standards are drafted in accordance with the rules in the ISO/IEC Directives,
Part 3.

In the �eld of information technology, ISO and IEC have established a joint technical commit-
tee, ISO/IEC JTC 1, Implementation of information technology. Draft International Standards
adopted by the joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national bodies casting a
vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 10967
may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying
any or all such patent rights.

International Standard ISO/IEC 10967-3 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Implementation of information technology, Subcommittee SC 22, Programming languages,
their environments and system software interfaces.

ISO/IEC 10967 consists of the following parts, under the general title Information technology
| Language independent arithmetic:

{ Part 1: Integer and
oating point arithmetic

{ Part 2: Elementary numerical functions

{ Part 3: Complex
oating point arithmetic and complex elementary numerical functions

Additional parts will specify other arithmetic datatypes or arithmetic operations.

Annex B is informative and is intended to be read in parallel with the main
normative text of the standard.

Notes and Annexes B, C, and D as well as notes are informative.

vii

ISO/IEC WD 10967-3.1:2000(E) Working draft

Introduction

The aims

Portability is a key issue for scienti�c and numerical software in today's heterogeneous com-
puting environment. Such software may be required to run on systems ranging from personal
computers to high performance pipelined vector processors and massively parallel systems, and
the source code may be ported between several programming languages.

Part 1 of ISO/IEC 10967 speci�es the basic properties of integer and
oating point types that
can be relied upon in writing portable software.

Part 2 of ISO/IEC 10967 speci�es a number of additional operations for integer and
oating
point types, in particular speci�cations for numerical approximations to elementary functions on
reals.

The content

The content of this part is based on part 1 and part 2, and extends part 1's and part 2's
speci�cations to speci�cations for operations approximating integer complex (Gaussian integers)
arithmetic, real complex arithmetic, and real complex elementary functions.

The numerical functions covered by this part are computer approximations to mathematical
functions of one or more complex arguments. Accuracy versus performance requirements often
vary with the application at hand. This is recognised by recommending that implementors support
more than one library of these numerical functions. Various documentation and (program avail-
able) parameters requirements are speci�ed to assist programmers in the selection of the library
best suited to the application at hand.

The bene�ts

Adoption and proper use of this part can lead to the following bene�ts.

Language standards will be able to de�ne their arithmetic semantics more precisely without
preventing the eÆcient implementation of their language on a wide range of machine architectures.

Programmers of numeric software will be able to assess the portability of their programs in
advance. Programmers will be able to trade o� program design requirements for portability in
the resulting program.

Programs will be able to determine (at run time) the crucial numeric properties of the imple-
mentation. They will be able to reject unsuitable implementations, and (possibly) to correctly
characterize the accuracy of their own results. Programs will be able to extract apparently imple-
mentation dependent data (such as the exponent of a
oating point number) in an implementation
independent way. Programs will be able to detect (and possibly correct for) exceptions in arith-
metic processing.

End users will �nd it easier to determine whether a (properly documented) application program
is likely to execute satisfactorily on their platform. This can be done by comparing the documented
requirements of the program against the documented properties of the platform.

Finally, end users of numeric application packages will be able to rely on the correct execution
of those packages. That is, for correctly programmed algorithms, the results are reliable if and
only if there is no noti�cation.

viii

EDITOR'S WORKING DRAFT ISO/IEC WD 10967-3.1:2000(E)

Information technology |

Language independent arithmetic |

Part 3: Complex arithmetic and complex elementary numerical functions

1 Scope

This part of ISO/IEC 10967 de�nes the properties of numerical approximations for complex arith-
metic operations and many of the complex elementary numerical functions available in standard
libraries for a variety of programming languages in common use for mathematical and numerical
applications.

An implementor may choose any combination of hardware and software support to meet the
speci�cations of this part. It is the computing environment, as seen by the programmer/user, that
does or does not conform to the speci�cations.

The term implementation of this part denotes the total computing environment pertinent to this
part, including hardware, language processors, subroutine libraries, exception handling facilities,
other software, and documentation.

1.1 Inclusions

The speci�cations of part 1 and part 2 are included by reference in this part.

This part provides speci�cations for numerical functions for which operand or result values are
of complex integer or complex
oating point datatypes constructed from integer and
oating point
datatypes satisfying the requirements of part 1. Boundaries for the occurrence of exceptions and
the maximum error allowed are prescribed for each speci�ed operation. Also the result produced
by giving a special value operand, such as an in�nity, or a NaN, is prescribed for each speci�ed

oating point operation.

This part provides speci�cations for

a) basic complex integer (Gaussian integer) operations,

b) non-transcendental Cartesian complex
oating point operations,

c) exponentiations, logarithms, hyperbolics, and

d) trigonometric operations for Cartesian complex
oating point.

This part also provides speci�cations for

e) the results produced by an included
oating point operation when one or more operand
values include IEC 60559 special values, and

f) program-visible parameters that characterise certain aspects of the operations.

1. Scope 1

ISO/IEC WD 10967-3.1:2000(E) Working draft

1.2 Exclusions

This part provides no speci�cations for:

a) Datatypes and operations for polar complex
oating point. This standard neither requires
nor excludes the presence of such polar complex datatypes and operations.

b) Numerical functions whose operands are of more than one datatype. This standard neither
requires nor excludes the presence of such \mixed operand" operations.

c) A complex interval datatype, or the operations on such data. This standard neither requires
nor excludes such data or operations.

d) A complex �xed point datatype, or the operations on such data. This standard neither
requires nor excludes such data or operations.

e) A complex rational datatype, or the operations on such data. This standard neither requires
nor excludes such data or operations.

f) Matrix, statistical, or symbolic operations. This standard neither requires nor excludes such
data or operations.

g) The properties of complex arithmetic datatypes that are not related to the numerical process,
such as the representation of values on physical media.

h) The properties of integer and
oating point datatypes that properly belong in language
standards or other speci�cations. Examples include

1) the syntax of numerals and expressions in the programming language,

2) the syntax used for parsed (input) or generated (output) character string forms for
numerals by any speci�c programming language or library,

3) the precedence of operators,

4) the consequences of applying an operation to values of improper datatype, or to unini-
tialised data,

5) the rules for assignment, parameter passing, and returning value,

6) the presence or absence of automatic datatype coercions.

Furthermore, this part does not provide speci�cations for:

i) how numerical functions should be implemented,

j) which algorithms are to be used for the various operations.

2 Conformity

It is expected that the provisions of this part of ISO/IEC 10967 will be incorporated by reference
and further de�ned in other International Standards; speci�cally in language standards and in
language binding standards.

A binding standard speci�es the correspondence between one or more datatypes, operations,
and parameters speci�ed in this part and the concrete language syntax of some programming
language. More generally, a binding standard speci�es the correspondence between certain oper-
ations and the elements of some arbitrary computing entity. A language standard that explicitly
provides such binding information can serve as a binding standard.

2 Conformity

Working draft ISO/IEC WD 10967-3.1:2000(E)

Conformity to this part is always with respect to a speci�ed set of datatypes and set of opera-
tions. Conformity to this part implies conformity to part 1 and part 2 for the integer and
oating
point datatypes and operations used.

When a binding standard for a language exists, an implementation shall be said to conform to
this part if and only if it conforms to the binding standard. In case of con
ict between a binding
standard and this part, the speci�cations of the binding standard takes precedence.

When a binding standard covers only a subset of the datatypes and operations de�ned in this
part, an implementation remains free to conform to this part with respect to other datatypes or
operations independently of that binding standard.

When no binding standard for a language and some operations speci�ed in this part exists, an
implementation conforms to this part if and only if it provides one or more datatypes and one or
more operations that together satisfy all the requirements of clauses 5 through 8 that are relevant
to those datatypes and operations. The implementation shall then document the binding.

An implementation is free to provide datatypes or operations that do not conform to this part,
or that are beyond the scope of this part. The implementation shall not claim or imply conformity
to this part with respect to such datatypes or operations.

An implementation is permitted to have modes of operation that do not conform to this part.
A conforming implementation shall specify how to select the modes of operation that ensure
conformity.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. See annex C for suggested language bindings.

2 A complete binding for this part will include (explicitly or by reference) a binding for
part 2 and part 1 as well, which in turn may include (explicitly or by reference) a binding
for IEC 60559 as well.

3 It is not possible to conform to this part without specifying to which set of datatypes and
set of operations conformity is claimed.

3 Normative references

The following standards contain provisions which, through reference in this text, constitute pro-
visions of this part. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this part are encouraged to investigate
the possibility of applying the most recent edition of the standards indicated below. Members of
IEC and ISO maintain registers of currently valid International Standards.

IEC 60559:1989, Binary
oating-point arithmetic for microprocessor systems.

ISO/IEC 10967-1:2002, Information technology | Language independent arithmetic
| Part 1: Integer and
oating point arithmetic.

ISO/IEC 10967-2:2000, Information technology | Language independent arithmetic
| Part 2: Elementary numerical functions.

3. Normative references 3

ISO/IEC WD 10967-3.1:2000(E) Working draft

4 Symbols and de�nitions

4.1 Symbols

4.1.1 Sets and intervals

In this part, Z denotes the set of mathematical integers, G denotes the set of Gaussian integers
(complex integers), R denotes the set of classical real numbers, and C denotes the set of complex
numbers over R. Note that Z � R � C.

[x; z] designates the interval fy 2 R j x 6 y 6 zg,
]x; z] designates the interval fy 2 R j x < y 6 zg,
[x; z[designates the interval fy 2 R j x 6 y < zg, and
]x; z[designates the interval fy 2 R j x < y < zg.

NOTE { The notation using a round bracket for an open end of an interval is not used, for
the risk of confusion with the notation for pairs.

4.1.2 Operators and relations

All pre�x and in�x operators have their conventional (exact) mathematical meaning. The con-
ventional notation for set de�nition and manipulation is also used. In particular this part uses

) and , for logical implication and equivalence
+, �, =, and jxj on complex values
� for multiplication on complex values
<, 6, =, 6=, >, and > between reals
[, \, �, 2, 62, �, �, *, 6=, and = with sets
� for the Cartesian product of sets
! for a mapping between sets

4.1.3 Mathematical functions

This part speci�es properties for a number of operations numerically approximating some of the
elementary functions. The following ideal mathematical functions are de�ned in Chapter 4 of the
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [43] (e is
the Napierian base):

ex, xy,
p
x, ln, logb,

sinh, cosh, tanh, coth, sech, csch, arcsinh, arccosh, arctanh, arccoth, arcsech, arccsch,
sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot, arcsec, arccsc.

Many of the inverses above are multi-valued. The selection of which value to return, the
principal value, so as to make the inverses into functions, is done in the conventional way. E.g.,p
x 2 [0;1[when x 2 [0;1[.

4.1.4 Datatypes and exceptional values

The datatype Boolean consists of the two values true and false.

Integer datatypes and
oating point datatypes are de�ned in part 1.

Let I be the non-special value set for an integer datatype conforming to part 1. Let F be the
non-special value set for a
oating point datatype Conforming to part 1. The following symbols
are de�ned in part 1 or part 2, and used in this part.

4 Symbols and de�nitions

Working draft ISO/IEC WD 10967-3.1:2000(E)

Exceptional values:
over
ow, under
ow, invalid, in�nitary, and absolute precision under
ow.

Integer operations:
negI , addI , subI , and mulI .

Floating point helper functions:
eF , uF , resultF , and rndF .

Floating point operations from part 1:
signF , negF , addF , subF , mulF , and divF .

Floating point operations from part 2:
sqrtF , hypotF , expF , powerF , lnF , logbaseF
sinhF , coshF , tanhF , cothF , sechF , cschF ,
arcsinhF , arccoshF , arctanhF , arccothF , arcsechF , arccschF ,
radF , sinF , cosF , tanF , cotF , secF , cscF ,
arcsinF , arccosF , arctanF , arccotF , arcsecF , arccscF , arcF .

Floating point datatypes that conform to part 1 shall, for use with this part, have a value for
the parameter pF such that pF > 2 � maxf1; logrF (2 � �)g, and have a value for the parameter
eminF such that eminF 6 �pF � 1.

NOTES

1 This implies that fminNF < 0:5 � epsilonF=rF in this part, rather than just fminNF 6

epsilonF .

2 These extra requirements, which do not limit the use of any existing
oating point datatype,
are made so that angles in radians are not too degenerate within the �rst two cycles, plus
and minus, when represented in F .

3 F should also be such that pF > 2+logrF (1000), to allow for a not too coarse angle resolution
anywhere in the interval [�big angle rF ; big angle rF]. See clause 5.3.9 of part 2.

The following symbols represent
oating point values de�ned in IEC 60559 and used in this
part:

���0, +1+1+1, �1�1�1, qNaN, and sNaN.

These
oating point values are not part of the set F , but if iec 559F has the value true, these
values are included in the
oating point datatype corresponding to F .

NOTE 4 { This part uses the above �ve special values for compatibility with IEC 60559. In
particular, the symbol ���0 (in bold) is not the application of (mathematical) unary � to the
value 0, and is a value logically distinct from 0.

The speci�cations cover the results to be returned by an operation if given one or more of the
IEC 60559 special values���0, +1+1+1, �1�1�1, or NaNs as input values. These speci�cations apply only
to systems which provide and support these special values. If an implementation is not capable
of representing a ���0 result or continuation value, the actual result or continuation value shall be
0. If an implementation is not capable of representing a prescribed result or continuation value
of the IEC 60559 special values +1+1+1, �1�1�1, or qNaN, the actual result or continuation value is
binding or implementation de�ned.

4.2 De�nitions of terms

For the purposes of this part, the following de�nitions apply:

accuracy: The closeness between the true mathematical result and a computed result.

arithmetic datatype: A datatype whose non-special values are members of Z, G, R, or C.
continuation value: A computational value used as the result of an arithmetic operation when

an exception occurs. Continuation values are intended to be used in subsequent arithmetic

4.2 De�nitions of terms 5

ISO/IEC WD 10967-3.1:2000(E) Working draft

processing. A continuation value can be a (in the datatype representable) value in R or an
IEC 60559 special value. (Contrast with exceptional value. See 6.1.2 of part 1.)

denormalisation loss: A larger than normal rounding error caused by the fact that subnormal
values have less than full precision. (See 5.2.5 of part 1 for a full de�nition.)

error: (1) The di�erence between a computed value and the correct value. (Used in phrases like
\rounding error" or \error bound".)

(2) A synonym for exception in phrases like \error message" or \error output". Error and
exception are not synonyms in any other context.

exception: The inability of an operation to return a suitable �nite numeric result from �nite
arguments. This might arise because no such �nite result exists mathematically, or because
the mathematical result cannot be represented with suÆcient accuracy.

exceptional value: A non-numeric value produced by an arithmetic operation to indicate the
occurrence of an exception. Exceptional values are not used in subsequent arithmetic pro-
cessing. (See clause 5 of part 1.)

NOTES

1 Exceptional values are used as part of the de�ning formalism only. With respect to
this part, they do not represent values of any of the datatypes described. There is no
requirement that they be represented or stored in the computing system.

2 Exceptional values are not to be confused with the NaNs and in�nities de�ned in
IEC 60559. Contrast this de�nition with that of continuation value above.

helper function: A function used solely to aid in the expression of a requirement. Helper func-
tions are not visible to the programmer, and are not required to be part of an implementation.

implementation (of this part): The total arithmetic environment presented to a programmer,
including hardware, language processors, exception handling facilities, subroutine libraries,
other software, and all pertinent documentation.

literal: A syntactic entity denoting a constant value without having proper sub-entities that are
expressions.

monotonic approximation: An
oating point operation opF : ::: � F � ::: ! F , for a
oating
point datatype with non-special value set F , where the other arguments are kept constant,
is a monotonic approximation of a predetermined mathematical function h : R ! R if, for
every a 2 F and b 2 F , a < b,

a) h is monotonic non-decreasing on [a; b] implies opF (:::; a; :::) 6 opF (:::; b; :::),

b) h is monotonic non-increasing on [a; b] implies opF (:::; a; :::) > opF (:::; b; :::).

monotonic non-decreasing: A function h : R ! R is monotonic non-decreasing on a real
interval [a; b] if for every x and y such that a 6 x 6 y 6 b, h(x) and h(y) are well-de�ned
and h(x) 6 h(y).

monotonic non-increasing: A function h : R ! R is monotonic non-increasing on a real
interval [a; b] if for every x and y such that a 6 x 6 y 6 b, h(x) and h(y) are well-de�ned
and h(x) > h(y).

normalised: The non-zero values of a
oating point type F that provide the full precision allowed
by that type. (See FN in 5.2 of part 1 for a full de�nition.)

noti�cation: The process by which a program (or that program's end user) is informed that an
arithmetic exception has occurred. For example, dividing 2 by 0 results in a noti�cation.
(See clause 6 of part 1 for details.)

6 Symbols and de�nitions

Working draft ISO/IEC WD 10967-3.1:2000(E)

numeral: A numeric literal. It may denote a value in Z or R, ���0, an in�nity, or a NaN.

numerical function: A computer routine or other mechanism for the approximate evaluation of
a mathematical function.

operation: A function directly available to the programmer, as opposed to helper functions or
theoretical mathematical functions.

pole: A mathematical function f has a pole at x0 if x0 is �nite, f is de�ned, �nite, monotone,
and continuous in at least one side of the neighbourhood of x0, and lim

x!x0
f(x) is in�nite.

precision: The number of digits in the fraction of a
oating point number. (See clause 5.2 of
part 1.)

rounding: The act of computing a representable �nal result for an operation that is close to the
exact (but unrepresentable) result for that operation. Note that a suitable representable
result may not exist (see 5.2.6 of part 1). (See also A.5.2.6 of part 1 for some examples.)

rounding function: Any function rnd : R ! X (where X is a given discrete and unlimited sub-
set of R) that maps each element of X to itself, and is monotonic non-decreasing. Formally,
if x and y are in R,

x 2 X) rnd(x) = x
x < y) rnd(x) 6 rnd(y)

Note that if u 2 R is between two adjacent values in X, rnd(u) selects one of those adjacent
values.

round to nearest: The property of a rounding function rnd that when u 2 R is between two
adjacent values in X, rnd(u) selects the one nearest u. If the adjacent values are equidistant
from u, either may be chosen deterministically.

round toward minus in�nity: The property of a rounding function rnd that when u 2 R is
between two adjacent values in X, rnd(u) selects the one less than u.

round toward plus in�nity: The property of a rounding function rnd that when u 2 R is
between two adjacent values in X, rnd(u) selects the one greater than u.

shall: A verbal form used to indicate requirements strictly to be followed in order to conform to
the standard and from which no deviation is permitted. (Quoted from the directives [1].)

should: A verbal form used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that (in the negative form)
a certain possibility is deprecated but not prohibited. (Quoted from the directives [1].)

signature (of a function or operation): A summary of information about an operation or func-
tion. A signature includes the function or operation name; a subset of allowed argument
values to the operation; and a superset of results from the function or operation (including
exceptional values if any), if the argument is in the subset of argument values given in the
signature.

The signature

addI : I � I ! I [fover
owg
states that the operation named addI shall accept any pair of I values as input, and (when
given such input) shall return either a single I value as its output or the exceptional value
over
ow.

4.2 De�nitions of terms 7

ISO/IEC WD 10967-3.1:2000(E) Working draft

A signature for an operation or function does not forbid the operation from accepting a
wider range of arguments, nor does it guarantee that every value in the result range will
actually be returned for some input. An operation given an argument outside the stipulated
argument domain may produce a result outside the stipulated result range.

subnormal: The non-zero values of a
oating point type F that provide less than the full precision
allowed by that type. (See FD in 5.2 of part 1 for a full de�nition.)

ulp: The value of one \unit in the last place" of a
oating point number. This value depends on
the exponent, the radix, and the precision used in representing the number. Thus, the ulp
of a normalised value x (in F), with exponent t, precision p, and radix r, is rt�p, and the
ulp of a subnormal value is fminDF . (See 5.2 of part 1.)

5 Speci�cations for complex datatypes and operations

This clause speci�es Gussian integer (complex integer) datatypes, complex
oating point datatypes
and a number of helper functions and operations for complex integer and complex
oating point
datatypes.

Each operation is given a signature and is further speci�ed by a number of cases. These cases
may refer to other operations (speci�ed in this part, in part 1, or in part 2), to mathematical
functions, and to helper functions (speci�ed in this part, in part 1, or in part 2). They also use
special abstract values (�1�1�1, +1+1+1, ���0, qNaN, sNaN). For each datatype, two of these abstract
values may represent several actual values each: qNaN and sNaN. Finally, the speci�cations
may refer to exceptional values.

The signatures in the speci�cations in this clause specify only all non-special values as input
values, and indicate as output values a superset of all non-special, special, and exceptional values
that may result from these (non-special) input values. Exceptional and special values that can
never result from non-special input values are not included in the signatures given. Also, signatures
that, for example, include IEC 60559 special values as arguments are not given in the speci�cations
below. This does not exclude such signatures from being valid for these operations.

5.1 Complex integer datatypes and operations

Clause 5.1 of part 1 and clause 5.1 of part 2 specify integer datatypes and a number of operations
on values of an integer datatype. In this clause complex integer (Gaussian integer) datatypes and
operations on values of a complex integer datatype are speci�ed.

A complex integer datatype is constructed from an integer datatype. For each integer datatype,
there is one complex integer datatype.

I is the set of non-special values, I � Z, for an integer datatype conforming to part 1. Integer
datatypes conforming to part 1 often do not contain any NaN or in�nity values, even though they
may do so. Therefore this clause has no speci�cations for such values as arguments or results.

i(I) is the set of non-special values in a imaginary integer datatype, constructed from the
datatype corresponding to I.

i(I) = f̂� � x0 j x0 2 Ig
c(I) is the set of non-special values in a complex integer datatype, constructed from the datatype
corresponding to I.

c(I) = fx+++ �̂ � x0 j x; x0 2 Ig

8 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

5.1.1 The complex integer result helper function

The resultc(I) helper function:

resultc(I) : G ! c(I) [fover
owg
resultc(I)(z) = resultI(Re(z)) +++ �̂ � resultI(Im(z))

NOTE { If one or both of the resultI function applications on the right side returns over
ow,
then the resultc(I) application returns over
ow. Similarly below for the speci�cations that
do not use resultc(I) but specify the result parts directly.

5.1.2 Complex integer operations

itimesI : I ! i(I) [fover
owg
itimesI(x) = �̂ � x

itimesc(I) : c(I)! c(I) [fover
owg
itimesc(I)(x+++ �̂ � x0)

= negI(x
0) +++ �̂ � x

reI : I ! I

reI(x) = x

rei(I) : i(I)! I

rei(I)(̂� � x0) = 0

rec(I) : c(I)! I

rec(I)(x+++ �̂ � x0) = x

imI : I ! I

imI(x) = 0

imi(I) : i(I)! I

imi(I)(̂� � x0) = x0

imc(I) : c(I)! I

imc(I)(x+++ �̂ � x0) = x0

plusitimesc(I) : I � I ! c(I)

plusitimesc(I)(x; y)

= x+++ �̂ � y

negi(I) : i(I)! i(I) [fover
owg
negi(I)(̂� � x

0) = �̂ � negI(x
0)

negc(I) : c(I)! c(I) [fover
owg

5.1.1 The complex integer result helper function 9

ISO/IEC WD 10967-3.1:2000(E) Working draft

negc(I)(x+++ �̂ � x0)

= negI(x) +++ �̂ � negI(x
0)

conjI : I ! I [fover
owg
conjI(x) = x

conji(I) : i(I)! i(I) [fover
owg
conji(I)(̂� � x

0) = �̂ � negI(x
0)

conjc(I) : c(I)! c(I) [fover
owg
conjc(I)(x+++ �̂ � x0)

= x+++ �̂ � negI(x
0)

addi(I) : i(I)� i(I)! i(I) [fover
owg
addi(I)(̂� � x0; �̂ � y0)

= �̂ � addI(x
0; y0)

addc(I) : c(I)� c(I)! c(I) [fover
owg
addc(I)(x+++ �̂ � x0; y+++ �̂ � y0)

= addF (x; y) +++ �̂ � addF (x
0; y0)

subi(I) : i(I)� i(I)! i(I) [fover
owg
subi(I)(x; y) = addi(I)(x; negi(I)(y))

subc(I) : c(I)� c(I)! c(I) [fover
owg
subc(I)(x; y) = addc(I)(x; negc(I)(y))

mulc(I) : c(I)� c(I)! c(I) [fover
owg
mulc(I)(x+++ �̂ � x0; y+++ �̂ � y0)

= resultc(I)((x+ �̂ � x0) � (y + �̂ � y0))
if x; y 2 c(I)

eqc(I) : c(I)� c(I)! Boolean

eqc(I)(x; y) = true if x; y 2 c(I) and x = y

= false if x; y 2 c(I) and x 6= y

neqc(I) : c(I) � c(I)! Boolean

neqc(I)(x; y) = true if x; y 2 c(I) and x 6= y

= false if x; y 2 c(I) and x = y

10 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

5.2 Complex
oating point datatypes and operations

Clause 5.2 of part 1 and clause 5.2 of part 2 specify
oating point datatypes and a number of
operations on values of a
oating point datatype. In this clause complex
oating point datatypes
and operations on values of a complex
oating point datatype are speci�ed.

NOTE { Further operations on values of a complex
oating point datatype, for elementary
complex
oating point numerical functions, are speci�ed in clause 5.3.

F is the non-special value set, F � R, for a
oating point datatype conforming to part 1.
Floating point datatypes conforming to part 1 often do contain ���0, in�nity, and NaN values.
Therefore, in this clause there are speci�cations for such values as arguments.

i(F) is the set of non-special values in a imaginary
oating point datatype, constructed from
the datatype corresponding to F .

i(F) = f̂� � y j y 2 Fg
c(F) is the set of non-special values in a complex
oating point datatype, constructed from the
datatype corresponding to F .

c(F) = fx+++ �̂ � x0 j x; x0 2 Fg

5.2.1 The complex
oating point result helper functions

result�c(F) : C � (R ! F �)! F [funder
ow;over
owg
result�c(F)(z; rnd)

= result�F (Re(z); rnd) +++ �̂ � result�F (Im(z); rnd)

over
ow, under
ow, ... combination...!, (inexact)????

result�F is de�ned in part 2.

De�ne the no resultc(F) and no result2c(F) helper functions:

no resultc(F) : c(F)! finvalidg
no resultc(F)(x+++ �̂ � x0)

= qNaN+++ �̂ � qNaN if x is a quiet NaN and x0 is not a signalling NaN
= qNaN+++ �̂ � qNaN if x0 is a quiet NaN and x is not a signalling NaN
= invalid(qNaN+++ �̂ � qNaN)

if x; x0 2 F [f�1�1�1;���0;+1+1+1g
= invalid(qNaN+++ �̂ � qNaN)

if x is a signalling NaN or x0 is a signalling NaN

no result2c(F) : c(F)� c(F)! finvalidg
no result2c(F)(x+++ �̂ � x0; y+++ �̂ � y0)

= qNaN+++ �̂ � qNaN if x is a quiet NaN and neither x0, y, nor
y0 is a signalling NaN

= qNaN+++ �̂ � qNaN if x0 is a quiet NaN and neither x, y, nor
y0 is not a signalling NaN

= qNaN+++ �̂ � qNaN if y is a quiet NaN and neither x, x0, nor
y0 is not a signalling NaN

= qNaN+++ �̂ � qNaN if y0 is a quiet NaN and neither x, x0, nor
y is not a signalling NaN

= invalid(qNaN+++ �̂ � qNaN)
if x; x0; y; y0 2 F [f�1�1�1;���0;+1+1+1g

= invalid(qNaN+++ �̂ � qNaN)
if at least one of x, x0, y, or y0 is a signalling NaN

5.2 Complex
oating point datatypes and operations 11

ISO/IEC WD 10967-3.1:2000(E) Working draft

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNaN+++ �̂ � qNaN) is the appropriate result.

NOTE { The handling of other special values, if available, is left unspeci�ed by this part.

5.2.2 Basic arithmetic for complex
oating point

itimesF : F ! i(F) [fover
owg
itimesF (x) = �̂ � x

itimesc(F) : c(F)! c(F) [fover
owg
itimesc(F)(x+++ �̂ � x0)

= negF (x
0) +++ �̂ � x

reF : F ! F

reF (x) = x

rei(F) : i(F)! F

rei(F)(̂� � x0) =���0

rec(F) : c(F)! F

rec(F)(x+++ �̂ � x0) = x

imF : F ! F

imF (x) =���0

imi(F) : i(F)! F

imi(F)(̂� � x0) = x0

imc(F) : c(F)! F

imc(F)(x+++ �̂ � x0)

= x0

plusitimesc(F) : F � F ! c(F)

plusitimesc(F)(x; y)

= x+++ �̂ � y

negi(F) : i(F)! i(F)

negi(F)(̂� � x0) = �̂ � negF (x
0)

negc(F) : c(F)! c(F)

negc(F)(x+++ �̂ � x0)

= negF (x) +++ �̂ � negF (x
0)

conj F : F ! F

12 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

conj F (x) = x

conj i(F) : i(F)! i(F)

conj i(F)(̂� � x
0) = �̂ � negF (x

0)

conj c(F) : c(F)! c(F)

conj c(F)(x+++ �̂ � x0)

= x+++ �̂ � negF (x
0)

addi(F) : i(F)� i(F)! i(F) [fover
owg
addi(F)(̂� � x

0; �̂ � y0)

= �̂ � addF (x
0; y0)

addc(F) : c(F) � c(F)! c(F) [fover
owg
addc(F)(x+++ �̂ � x0; y+++ �̂ � y0)

= addF (x; x
0) +++ �̂ � addF (y; y

0)

subi(F) : i(F)� i(F)! i(F) [fover
owg
subi(F)(̂� � x

0; �̂ � y0)

= �̂ � subF (x
0; y0)

subc(F) : c(F) � c(F)! c(F) [fover
owg
subc(F)(x; y) = addc(F)(x; negc(F)(y))

muli(F) : i(F)� i(F)! F [fover
owg
muli(F)(̂� � x; �̂ � x0)

= negF (mulF (x; x
0))

NOTE 1 { mulc(F) is speci�ed in clause 5.2.3

divi(F) : i(F)� i(F)! F [fover
owg
divi(F)(̂� � x; �̂ � x

0)

= divF (x; x
0)

NOTE 2 { divc(F) is speci�ed in clause 5.2.3

eqc(F) : c(F) � c(F)! Boolean

eqc(F)(x; y) = true if x; y 2 c(F) and x = y

= false if x; y 2 c(F) and x 6= y

neqc(F) : c(F)� c(F)! Boolean

neqc(F)(x; y) = true if x; y 2 c(F) and x 6= y

= false if x; y 2 c(F) and x = y

absi(F) : i(F)! F

absi(F)(̂� � x
0) = absF (x

0)

5.2.2 Basic arithmetic for complex
oating point 13

ISO/IEC WD 10967-3.1:2000(E) Working draft

absc(F) : c(F)! F [funder
ow;over
owg
absc(F)(x+++ �̂ � x0)

= hypotF (x; x
0)

phaseF : F ! F

phaseF (x) = arcF (x;���0)

phasei(F) : i(F)! F

phasei(F)(̂� � x0) = arcF (���0; x0)

phasec(F) : c(F)! F [funder
owg
phasec(F)(x+++ �̂ � x0)

= arcF (x; x
0)

signi(F) : i(F)! i(F)

signi(F)(̂� � x0) = �̂ � signF (x
0)

signc(F) : c(F)! c(F) [funder
owg
signc(F)(x+++ �̂ � x0)

= sinF (arcF (x; x
0)) +++ �̂ � cosF (arcF (x; x

0)

5.2.3 Complex multiplication and division

There shall be two maximum error parameters for complex multiplication and division.

max error mulc(F) 2 F

max error divc(F) 2 F

no monotonicity requirements? no sign requirements? dependency on argument values?

The mul�c(F) approximation helper function:

mul�c(F) : C � C ! C
mul�c(F)(x; y) returns a close approximation to x � y in C with maximum error max error mulc(F).

Further requirement on the mul�c(F) approximation helper function are:

mul�c(F)(z; z
0) = mul�c(F)(z

0; z) if z; z0 2 C
mul�c(F)(�z; z0) = �mul�c(F)(z; z

0) if z; z0 2 C
mul�c(F)(conj(z); conj(z

0)) = conj(mul�c(F)(z; z
0))

if z; z0 2 C
The mulc(F) operation:

mulc(F) : c(F)� c(F)! c(F) [f���0:::;under
ow;over
owg
mulc(F)(x+++ �̂ � x0; y+++ �̂ � y0)

= result�c(F)(mul�c(F)(x+ �̂ � x0; y + �̂ � y0))
if x+++ �̂ � x0; y+++ �̂ � y0 2 c(F) and x+ �̂ � x0 6= 0 and y + �̂ � y0 6= 0

= subF (mulF (x; y);mulF (x
0; y0)) +++ �̂ � addF (mulF (x; y

0);mulF (x
0; y))

otherwise

The div�c(F) approximation helper function:

14 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

div�c(F) : C � C ! C
div�c(F)(x; y) returns a close approximation to x=y in C with maximum error max error divc(F).

Further requirement on the div�c(F) approximation helper function are:

div�c(F)(�z; z0) = �div�c(F)(z; z
0) if z; z0 2 C and z0 6= 0

div�c(F)(z;�z0) = �div�c(F)(z; z
0) if z; z0 2 C and z0 6= 0

div�c(F)(conj(z); conj(z
0)) = conj(div�c(F)(z; z

0))

if z; z0 2 C and z0 6= 0

The divc(F) operation:

divc(F) : c(F) � c(F)! c(F) [f���0:::;under
ow;over
ow; in�nitary; invalidg
divc(F)(x+++ �̂ � x0; y+++ �̂ � y0)

= result�c(F)(div
�

c(F)(x+ �̂ � x0; y + �̂ � y0))
if x+++ �̂ � x0; y+++ �̂ � y0 2 c(F) and jyj 6= jy0j

=??? otherwise

5.3 Elementary transcendental complex
oating point operations

5.3.1 Operations for exponentiations and logarithms

There shall be two maximum error parameters for complex exponentiations and logarithms.

max error expc(F) 2 F

max error powerc(F) 2 F

no monotonicity requirements? no sign requirements? dependency on argument values?

5.3.1.1 Natural exponentiation

The exp�c(F) approximation helper function:

exp�c(F) : C ! C
exp�c(F)(z) returns a close approximation to ez in C with maximum error max error expc(F).

A further requirement on the exp�c(F) approximation helper function is:

exp�c(F)(conj(z)) = conj(exp�c(F)(z)) if z 2 C
The relationship to the cos�F , sin

�

F , and exp�F approximation helper functions in an associated
library for real-valued operations shall be:

exp�c(F)(̂� � x0) = cos�F (x
0) + �̂ � sin�F (x0) if x0 2 R

exp�c(F)(x) = exp�F (x) if x 2 R
...cyclic rep. in general...

The expc(F) operation:

expc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
expc(F)(x+++ �̂ � x0)

= result�c(F)(exp
�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F) and jx0j 6 big angle rF

= expc(F)(0 +++ �̂ � x0) if x =���0
= conj c(F)(expc(F)(x+++ �̂ � 0))

if x0 =���0 and x 6=���0
= mulF (0; cosF (x

0)) +++ �̂ � mulF (0; sinF (x
0))

5.3 Elementary transcendental complex
oating point operations 15

ISO/IEC WD 10967-3.1:2000(E) Working draft

if x =�1�1�1 and x0 2 F and jx0j 6 big angle rF
= mulF (+1+1+1; cosF (x

0)) +++ �̂ � mulF (+1+1+1; sinF (x
0))

if x =+1+1+1 and x0 2 F and jx0j 6 big angle rF and x0 6= 0
= +1+1+1+++ �̂ � 0 if x =+1+1+1 and x0 2 F and x0 = 0
= radhc(F)(x+++ �̂ � x0) otherwise

NOTE { radhc(F) is speci�ed in clause 5.3.3.1.

5.3.1.2 Complex exponentiation of argument base

The power�c(F) approximation helper function:

power�c(F) : C � C ! C
power�c(F)(b; z) returns a close approximation to bz in C with maximum errormax error powerc(F).

A further requirement on the power�c(F) approximation helper function is:

power�c(F)(conj(b); conj(z)) = conj(power�c(F)(b; z))

if b; z 2 C
The powerc(F) operation:

powerc(F) : c(F) � c(F)! c(F) [funder
ow;over
ow;absolute precision under
ow; invalidg
powerc(F)(x+++ �̂ � x0; y+++ �̂ � y0)

= result�c(F)(power
�

c(F)(x+ �̂ � x0; y + �̂ � y0); nearestF)
if x+++ �̂ � x0; y+++ �̂ � y0 2 c(F) and x 6= 0 and
jy0 � ln(jxj)j is not too large...?

= powerc(F)(0 +++ �̂ � x0; y+++ �̂ � y0)

if x =���0 (?)
=?????? if x0 =���0 and x 6=���0
= powerc(F)(x+++ �̂ � x0; 0+++ �̂ � y0)

if y =���0
= conj c(F)(powerc(F)(x+++ �̂ � x0; y+++ �̂ � 0))

if y0 =���0 (?)
= expc(F)(mulc(F)(lnc(F)(x+++ �̂ � x0); y+++ �̂ � y0))

otherwise

NOTE { Complex raising to a power is multi-valued. The principal result is given by
bq = eq�ln(b). The bq function branch cuts at fx j x 2 R and x < 0g � C (except when q is in
Z). Thus powerc(F)(x+++ �̂ � 0; y) 6= powerc(F)(x+++ �̂ � (���0); y).

5.3.1.3 Complex square root

The sqrt�c(F) approximation helper function:

sqrt�c(F) : C ! C
sqrt�c(F)(z) returns a close approximation to

p
z in C with maximum error max error expc(F).

Further requirements on the sqrt�c(F) approximation helper function are:

sqrt�c(F)(conj(z)) = conj(sqrt�c(F)(z)) if z 2 C
sqrt�c(F)(x) =

p
x if x 2 R and x > 0

sqrt�c(F)(x) = �̂ � sqrt�c(F)(�x) if x 2 R and x < 0

Re(sqrt�c(F)(̂� � x0)) = Im(sqrt�c(F)(̂� � x0)) if x0 2 R and x0 > 0

The sqrtc(F) operation:

16 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

sqrtc(F) : c(F)! c(F)

sqrtc(F)(x+++ �̂ � x0)

= result�c(F)(sqrt
�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F)

= sqrtc(F)(0 +++ �̂ � x0) if x =���0 and x0 2 F [f�1�1�1;+1+1+1g
=���0+++ �̂ � (���0) if x = negz and x0 =���0
= conj c(F)(sqrtc(F)(x+++ �̂ � 0))

if x 2 F [f�1�1�1;+1+1+1g and x0 =���0
=+1+1+1+++ �̂ � (+1+1+1) if x 2 F [f�1�1�1;���0;+1+1+1g and x0 =+1+1+1
=+1+1+1+++ �̂ � 0 if x =+1+1+1 and x0 2 F and x > 0
= +1+1+1+++ �̂ � (���0) if x =+1+1+1 and ((x0 2 F and x0 < 0 or x0 =���0)
= +1+1+1+++ �̂ � (�1�1�1) if x 2 F [f�1�1�1;���0;+1+1+1g and x0 =�1�1�1
= 0+++ �̂ � (+1+1+1) if x =�1�1�1 and x0 2 F and x > 0
= 0+++ �̂ � (�1�1�1) if x =�1�1�1 and ((x0 2 F and x0 < 0 or x0 =���0)
= no resultc(F)(x+++ �̂ � x0)

otherwise

NOTE { The inverse of complex square is multi-valued. The principal result is given byp
b = e0:5�ln(b). The

p
function branch cuts at fx j x 2 R and x < 0g. Thus sqrtc(F)(x+++�̂�0) 6=

sqrtc(F)(x+++ �̂ � (���0)) when x < 0.

5.3.1.4 Natural logarithm

The ln�c(F) approximation helper function:

ln�c(F) : C ! C
ln�c(F)(z) returns a close approximation to ln(z) in C with maximum error max error expc(F).

A further requirement on the ln�c(F) approximation helper function is:

ln�c(F)(conj(z)) = conj(ln�c(F)(z)) if z 2 C
The relationship to the arc�F and ln�F approximation helper functions in an associated library

for real-valued operations shall be:

Im(ln�c(F)(x+ �̂ � x0)) = arc�F (x; x
0) if x; x0 2 R

Re(ln�c(F)(x+ �̂ � x0)) = ln�F (jx+ �̂ � x0j) if x; x0 2 R and (x = 0 or x0 = 0)

The lnc(F) operation:

lnc(F) : c(F)! c(F) [fin�nitaryg
lnc(F)(x+++ �̂ � x0) = result�c(F)(ln

�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F) and (x 6= 0 or x0 6= 0)

= in�nitary(�1�1�1+++ �̂ � arcF (x; x
0))

if x; x0 2 f���0; 0g
= conj c(F)(lnc(F)(x+++ �̂ � 0))

if x0 =���0
= lnc(F)(0 +++ �̂ � x0) if x =���0 and x 2 F and x0 6= 0

= +1+1+1+++ �̂ � arcF (x; x
0) if x 2 f�1�1�1;+1+1+1g and x0 2 F [f�1�1�1;+1+1+1g

=+1+1+1+++ �̂ � arcF (x; x
0) if x 2 F and x0 2 f�1�1�1;+1+1+1g

= no resultc(F)(x+++ �̂ � x0)

otherwise

NOTES

5.3.1 Operations for exponentiations and logarithms 17

ISO/IEC WD 10967-3.1:2000(E) Working draft

1 The inverse of natural exponentiation is multi-valued: the imaginary part may have any
integer multiple of 2 �� added to it, and the result is also in the solution set. The ln function
(returning the principle value for the inverse) branch cuts at fx j x 2 R and x < 0g, is
continuous on the rest of C, and ln(z) 2 R if x 2 R and x > 0. Thus lnc(F)(x+++ �̂ � 0) 6=
lnc(F)(x+++ �̂ � (���0)) when x < 0.

2 rec(F)(lnc(F)(x+++ �̂ � x0)) � lnF (hypotF (x; x
0)) and

imc(F)(lnc(F)(x+++ �̂ � x0)) = arcF (x; x
0) when there is no noti�cation.

5.3.1.5 Argument base logarithm

The logbase�c(F) approximation helper function:

logbase�c(F) : C � C ! C
logbase�c(F)(b; z) returns a close approximation to logb(z) in C with maximum errormax error powerc(F).

A further requirement on the logbase�c(F) approximation helper function is:

logbase�c(F)(conj(b); conj(z)) = conj(logbase�c(F)(b; z))

if b; z 2 C
The logbasec(F) operation:

logbasec(F) : c(F) � c(F)! c(F) [fin�nitary; invalidg
logbasec(F)(x+++ �̂ � x0; y+++ �̂ � y0)

= result�c(F)(logbase
�

c(F)(x+ �̂ � x0; y + �̂ � y0); nearestF)
if x+++ �̂ � x0; y+++ �̂ � y0 2 c(F) and x 6= 0 and
jRe(ln(x+ �̂ � x0))j 6= jIm(ln(x+ �̂ � x0))j

= divc(F)(lnc(F)(y+++ �̂ � y0); lnc(F)(x+++ �̂ � x0))

otherwise

NOTE { Complex logarithm with argument base is multi-valued. The principal result is
given by logb(q) = ln(q)= ln(b). Apart from the poles, the logb(q) function branch cuts at
(fx j x 2 R and x < 0g � C) [(C � fx j x 2 R and x < 0g).

5.3.2 Operations for radian trigonometric elementary functions

There shall be two maximum error parameters for complex trigonometric operations.

max error sinc(F) 2 F

max error tanc(F) 2 F

no monotonicity requirements? no sign requirements? dependency on argument values?

5.3.2.1 Radian angle normalisation

radi(F) : i(F)! i(F) [fabsolute precision under
owg
radi(F)(̂� � x0) = �̂ � x0

radc(F) : c(F)! c(F) [fabsolute precision under
owg
radc(F)(x+++ �̂ � x0)

= radF (x) +++ �̂ � x0 if x0 2 F [f�1�1�1;���0;+1+1+1g and radF (x) 2 F [f���0g
= absolute precision under
ow(qNaN+++ �̂ � qNaN)

if x0 2 F [f�1�1�1;���0;+1+1+1g and
radF (x) = absolute precision under
ow

= no result c(F)(x+++ �̂ � x0) otherwise

18 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

5.3.2.2 Radian sine

The sini(F) operation:

sini(F) : i(F)! i(F) [fover
owg
sini(F)(̂� � x0) = �̂ � sinhF (x

0)

The sin�c(F) approximation helper function:

sin�c(F) : C ! C
sin�c(F)(z) returns a close approximation to sin(z) in C with maximum error max error sinc(F).

Further requirements on the sin�c(F) approximation helper function are:

sin�c(F)(conj(z)) = conj(sin�c(F)(z)) if z 2 C
sin�c(F)(�z) = �sin�c(F)(z) if z 2 C

The relationship to the sin�F and sinh�F approximation helper functions in an associated library
for real-valued operations shall be:

sin�c(F)(x) = sin�F (x) if x 2 R
sin�c(F)(̂� � x0) = �̂ � sinhF (x0) if x0 2 R

The requirements implied by these relationships and the requirements from part 2 (GENER-
ALISE?) remain even if there is no sinF or sinhF operations in any associated library for real-
valued operations or there is no associated library for real-valued operations.

The sinc(F) operation:

sinc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
sinc(F)(x+++ �̂ � x0)

= result�c(F)(sin
�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F) and jxj 6 big angle rF

= conj c(F)(sinc(F)(x+++ �̂ � 0))

if x0 =���0
= negc(F)(sinc(F)(0 +++ �̂ � negF (x

0)))

if x =���0 and x0 6=���0
= 0+++ �̂ � (+1+1+1) if x = 0 and x0 =+1+1+1
= 0+++ �̂ � (�1�1�1) if x = 0 and x0 =�1�1�1
= mulF (+1+1+1; sinF (x)) +++ �̂ � mulF (+1+1+1; cosF (x))

if x0 =+1+1+1 and x 62 f���0; 0g
= mulF (+1+1+1; sinF (x)) +++ �̂ � mulF (�1�1�1; cosF (x))

if x0 =�1�1�1 and x 62 f���0; 0g
= radc(F)(x+++ �̂ � x0) otherwise

5.3.2.3 Radian cosine

The cosi(F) operation:

cosi(F) : i(F)! F [fover
owg
cosi(F)(̂� � x0) = coshF (x

0)

The cos�c(F) approximation helper function:

cos�c(F) : C ! C
cos�c(F)(z) returns a close approximation to cos(z) in C with maximum error max error sinc(F).

Further requirements on the cos�c(F) approximation helper function are:

5.3.2 Operations for radian trigonometric elementary functions 19

ISO/IEC WD 10967-3.1:2000(E) Working draft

cos�c(F)(conj(z)) = conj(cos�c(F)(z)) if z 2 C
cos�c(F)(�z) = cos�c(F)(z) if z 2 C

The relationship to the cos�F and cosh�F approximation helper functions in an associated library
for real-valued operations shall be:

cos�c(F)(x) = cos�F (x) if x 2 R
cos�c(F)(̂� � x0) = coshF (x

0) if x0 2 R
The cosc(F) operation:

cosc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
cosc(F)(x+++ �̂ � x0)

= result�c(F)(cos
�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F) and jxj 6 big angle rF

= conj c(F)(cosc(F)(x+++ �̂ � 0))

if x0 =���0
= cosc(F)(0 +++ �̂ � negF (x

0))

if x =���0 and x0 6=���0
=+1+1+1+++ �̂ � (���0) if x0 =+1+1+1 and x = 0
= +1+1+1+++ �̂ � 0 if x0 =�1�1�1 and x = 0
= mulF (+1+1+1; cosF (x)) +++ �̂ � mulF (�1�1�1; sinF (x))

if x0 =+1+1+1 and x 62 f���0; 0g
= mulF (+1+1+1; cosF (x)) +++ �̂ � mulF (+1+1+1; sinF (x))

if x0 =�1�1�1 and x 62 f���0; 0g
= radc(F)(x+++ �̂ � x0) otherwise

5.3.2.4 Radian tangent

The tani(F) operation:

tani(F) : i(F)! i(F) [fover
owg
tani(F)(̂� � x

0) = �̂ � tanhF (x
0)

The tan�c(F) approximation helper function:

tan�c(F) : C ! C
tan�c(F)(z) returns a close approximation to tan(z) in C with maximum error max error tanc(F).

Further requirements on the tan�c(F) approximation helper function are:

tan�c(F)(conj(z)) = conj(tan�c(F)(z)) if z 2 C
tan�c(F)(�z) = �tan�c(F)(z) if z 2 C

The relationship to the tan�F and tanh�F approximation helper functions in an associated library
for real-valued operations shall be:

tan�c(F)(x) = tan�F (x) if x 2 R
tan�c(F)(̂� � x0) = �̂ � tanhF (x0) if x0 2 R

The tanc(F) operation:

tanc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
tanc(F)(x+++ �̂ � x0)

= result�c(F)(tan
�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F) and jxj 6 big angle rF

= conj c(F)(tanc(F)(x+++ �̂ � 0))

if x0 =���0

20 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

= negF (tanc(F)(0 +++ �̂ � negF (x
0)))

if x =���0 and x0 6=���0
= mulF (0; tanF (x)) +++ �̂ � 1

if x0 =+1+1+1
= mulF (0; tanF (x)) +++ �̂ � (�1)

if x0 =�1�1�1
= radc(F)(x+++ �̂ � x0) otherwise

5.3.2.5 Radian cotangent

The coti(F) operation:

coti(F) : i(F)! i(F) [funder
ow; in�nitaryg
coti(F)(̂� � x0) = negi(F)(̂� � cothF (x

0))

The cot�c(F) approximation helper function:

cot�c(F) : C ! C
cot�c(F)(z) returns a close approximation to cot(z) in C with maximum error max error tanc(F).

Further requirements on the cot�c(F) approximation helper function are:

cot�c(F)(conj(z)) = conj(cot�c(F)(z)) if z 2 C
cot�c(F)(�z) = �cot�c(F)(z) if z 2 C

The relationship to the cot�F and coth�F approximation helper functions in an associated library
for real-valued operations shall be:

cot�c(F)(x) = cot�F (x) if x 2 R
cot�c(F)(̂� � x0) = ��̂ � cothF (x0) if x0 2 R

The cotc(F) operation:

cotc(F) : c(F)! c(F) [funder
ow;over
ow; in�nitary;absolute precision under
owg
cotc(F)(x+++ �̂ � x0)

= result�c(F)(cot
�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F) and jxj 6 big angle rF and
(x 6= 0 or x0 6= 0)

= conj c(F)(tanc(F)(x+++ �̂ � 0))

if x0 =���0
= negF (tanc(F)(0 +++ �̂ � negF (x

0)))

if x =���0 and x0 6=���0
= mulF (0; tanF (x)) +++ �̂ � (�1)

if x0 =+1+1+1
= mulF (0; tanF (x)) +++ �̂ � 1

if x0 =�1�1�1
= in�nitary(+1+1+1+++ �̂ � (+1+1+1))

if x = 0 and x0 = 0
= radc(F)(x+++ �̂ � x0) otherwise

5.3.2.6 Radian secant

The seci(F) operation:

seci(F) : i(F)! c(F) [fover
owg
seci(F)(̂� � x0) = negi(F)(̂� � sechF (x

0))

5.3.2 Operations for radian trigonometric elementary functions 21

ISO/IEC WD 10967-3.1:2000(E) Working draft

The sec�c(F) approximation helper function:

sec�c(F) : C ! C
sec�c(F)(z) returns a close approximation to sec(z) in C with maximum error max error tanc(F).

Further requirements on the sec�c(F) approximation helper function are:

sec�c(F)(conj(z)) = conj(sec�c(F)(z)) if z 2 C
sec�c(F)(�z) = �sec�c(F)(z) if z 2 C

The relationship to the sec�F and sech�F approximation helper functions in an associated library
for real-valued operations shall be:

sec�c(F)(x) = sec�F (x) if x 2 R
sec�c(F)(̂� � x0) = ��̂ � sechF (x0) if x0 2 R

The secc(F) operation:

secc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
secc(F)(x+++ �̂ � x0)

= result�c(F)(sec
�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F) and jxj 6 big angle rF

= conj c(F)(secc(F)(x+++ �̂ � 0))

if x0 =���0
= secc(F)(0 +++ �̂ � negF (x

0))

if x =���0 and x0 6=���0
= mulF (0; cosF (x)) +++ �̂ � mulF (���0; sinF (x))

if x0 =+1+1+1
= mulF (0; cosF (x)) +++ �̂ � mulF (0; sinF (x))

if x0 =�1�1�1
= radc(F)(x+++ �̂ � x0) otherwise

5.3.2.7 Radian cosecant

The csci(F) operation:

csci(F) : i(F)! c(F) [fover
ow; in�nitaryg
csci(F)() = negi(F)(̂� � cschF (x

0))

The csc�c(F) approximation helper function:

csc�c(F) : C ! C
csc�c(F)(z) returns a close approximation to csc(z) in C with maximum error max error tanc(F).

Further requirements on the csc�c(F) approximation helper function are:

csc�c(F)(conj(z)) = conj(csc�c(F)(z)) if z 2 C
csc�c(F)(�z) = �csc�c(F)(z) if z 2 C

The relationship to the csc�F and csch�F approximation helper functions in an associated library
for real-valued operations shall be:

csc�c(F)(x) = csc�F (x) if x 2 R
csc�c(F)(̂� � x0) = ��̂ � cschF (x0) if x0 2 R

The cscc(F) operation:

cscc(F) : c(F)! c(F) [funder
ow;over
ow; in�nitary;absolute precision under
owg

22 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

cscc(F)(x+++ �̂ � x0)

= result�c(F)(csc
�

c(F)(x+ �̂ � x0); nearestF)
if x+++ �̂ � x0 2 c(F) and jxj 6 big angle rF and
(x 6= 0 or x0 6= 0)

= conj c(F)(cscc(F)(x+++ �̂ � 0))

if x0 =���0
= negF (cscc(F)(0 +++ �̂ � negF (x

0)))

if x =���0 and x0 6=���0
= mulF (���0; sinF (x)) +++ �̂ � mulF (���0; cosF (x))

if x0 =+1+1+1
= mulF (���0; sinF (x)) +++ �̂ � mulF (0; cosF (x))

if x0 =�1�1�1
= in�nitary(+1+1+1+++ �̂ � (+1+1+1))

if x = 0 and x0 = 0
= radc(F)(x+++ �̂ � x0) otherwise

5.3.2.8 Radian arc sine

The arcsini(F) operation:

arcsini(F) : i(F)! i(F)

arcsini(F)(̂� � x0) = �̂ � arcsinhF (x
0)

The arcsin�c(F) approximation helper function:

arcsin�c(F) : C ! C
arcsin�c(F)(z) returns a close approximation to arcsin(z) in C with maximum errormax error sinc(F).

Further requirements on the arcsin�c(F) approximation helper function are:

arcsin�c(F)(conj(z)) = conj(arcsin�c(F)(z)) if z 2 C
arcsin�c(F)(�z) = �arcsin�c(F)(z) if z 2 C
Re(arcsin�c(F)(x)) = ��=2 if x 2 R and x 6 �1
Re(arcsin�c(F)(x)) = �=2 if x 2 R and x > 1

The relationship to the arcsin�F and arcsinh�F approximation helper functions in an associated
library for real-valued operations shall be:

arcsin�c(F)(x) = arcsin�F (x) if x 2 R and jxj 6 1

arcsin�c(F)(̂� � x0) = �̂ � arcsinh�F (x0) if x0 2 R
The arcsin#

c(F) range limitation helper function:

arcsin#
c(F)(z) = maxfupF (��=2);minfRe(arcsin�F (z)); downF (�=2)gg + �̂ � Im(arcsin�F (z))

The arcsinc(F) operation:

arcsinc(F) : c(F)! c(F) [funder
owg
arcsinc(F)(x+++ �̂ � x0)

= result�c(F)(arcsin
#
c(F)(x+ �̂ � x0); nearestF)

if x+++ �̂ � x0 2 c(F)
= negc(F)(arcsinc(F)(0 +++ �̂ � negF (x

0))

if x =���0
= conj c(F)(arcsinc(F)(x+++ �̂ � 0)

if x0 =���0 and x 6=���0
= arcF (x

0; x) +++ �̂ � (+1+1+1) if x0 =+1+1+1 and x 2 f�1�1�1;���0;+1+1+1g

5.3.2 Operations for radian trigonometric elementary functions 23

ISO/IEC WD 10967-3.1:2000(E) Working draft

= arcF (negF (x
0); x) +++ �̂ � (�1�1�1)

if x0 =�1�1�1 and x 2 f�1�1�1;���0;+1+1+1g
= arcF (x

0; x) +++ �̂ � (+1+1+1) if x 2 f�1�1�1;+1+1+1g and x0 2 F and x0 > 0
= arcF (negF (x

0); x) +++ �̂ � (�1�1�1)
if x 2 f�1�1�1;+1+1+1g and x0 2 F and x0 < 0

= no resultc(F)(x+++ �̂ � x0)

otherwise

NOTE { The inverse of sin is multi-valued, the real part may have any integer multiple of
2 � � added to it, and the result is also in the solution set. The arcsin function (returning the
principal value for the inverse) branch cuts at fx j x 2 R and jxj > 1g. Thus arcsinc(F)(x+++
�̂ � 0) 6= arcsinc(F)(x+++ �̂ � (���0)) when jxj > 1.

5.3.2.9 Radian arc cosine

The arccos�c(F) approximation helper function:

arccos�c(F) : C ! C
arccos�c(F)(z) returns a close approximation to arccos(z) in C with maximum errormax error sinc(F).

Further requirements on the arccos�c(F) approximation helper function are:

arccos�c(F)(conj(z)) = conj(arccos�c(F)(z)) if z 2 C
Re(arccos�c(F)(x)) = � if x 2 R and x 6 �1

The relationship to the arccos�F and arccosh�F approximation helper functions in an associated
library for real-valued operations shall be:

arccos�c(F)(x) = arccos�F (x) if x 2 R and jxj 6 1

The arccos#c(F) range limitation helper function:

arccos#c(F)(x+ �̂ � x0) = minfRe(arccos�F (x+ �̂ � x0)); downF (�)g + �̂ � Im(arccos�F (x+ �̂ � x0))
The arccosc(F) operation:

arccosc(F) : c(F)! c(F)

arccosc(F)(x+++ �̂ � x0)

= result�c(F)(arccos
#
c(F)(x+ �̂ � x0); nearestF)

if x+++ �̂ � x0 2 c(F)
= arccosc(F)(0 +++ �̂ � negF (x

0)

if x =���0
= conj c(F)(arccosc(F)(x+++ �̂ � 0)

if x0 =���0 and x 6=���0
= arcF (x; x

0) +++ �̂ � (�1�1�1) if x0 =+1+1+1 and x 2 f�1�1�1;���0;+1+1+1g
= arcF (x; negF (x

0)) +++ �̂ � (+1+1+1)
if x0 =�1�1�1 and x 2 f�1�1�1;���0;+1+1+1g

= arcF (x; x
0) +++ �̂ � (�1�1�1) if x 2 f�1�1�1;+1+1+1g and x0 2 F and x0 > 0

= arcF (x; negF (x
0)) +++ �̂ � (+1+1+1)

if x 2 f�1�1�1;+1+1+1g and x0 2 F and x0 < 0
= no resultc(F)(x+++ �̂ � x0)

otherwise

NOTE { The inverse of cos is multi-valued, the real part may have any integer multiple of
2 � � added to it, and the result is also in the solution set. The arccos function (returning the
principal value for the inverse) branch cuts at fx j x 2 R and jxj > 1g. Thus arccosc(F)(x+++
�̂ � 0) 6= arccosc(F)(x+++ �̂ � (���0)) when jxj > 1.

24 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

5.3.2.10 Radian arc tangent

The arctani(F) operation:

arctani(F) : i(F)! i(F) [funder
ow; in�nitaryg
arctani(F)(̂� � x0) = �̂ � arctanhF (x

0)

The arctan�c(F) approximation helper function:

arctan�c(F) : C ! C
arctan�c(F)(z) returns a close approximation to arctan(z) in C with maximum errormax error tanc(F).

Further requirements on the arctan�c(F) approximation helper function are:

arctan�c(F)(conj(z)) = conj(arctan�c(F)(z)) if z 2 C
arctan�c(F)(�z) = �arctan�c(F)(z)

if z 2 C
Re(arctan�c(F)(̂� � x0) = �=2 if x0 2 R and jx0j > 1

The relationship to the arctan�F and arctanh�F approximation helper functions in an associated
library for real-valued operations shall be:

arctan�c(F)(x) = arctan�F (x) if x 2 R
arctan�c(F)(̂� � x0) = �̂ � arctanh�F (x0) if x0 2 R and jx0j < 1

The arctan#
c(F) range limitation helper function:

arctan#
c(F)(z) = maxfupF (��=2);minfRe(arctan�F (z)); downF (�=2)gg + �̂ � Im(arctan�F (z))

The arctanc(F) operation:

arctanc(F) : c(F)! c(F) [funder
ow; in�nitaryg
arctanc(F)(x+++ �̂ � x0)

= result�c(F)(arctan
#
c(F)(x+ �̂ � x0)); nearestF)

if x+++ �̂ � x0 2 c(F) and ((x0 6= 1 and x0 6= �1) or x 6= 0)
= negc(F)(arctanc(F)(0 +++ �̂ � negF (x

0))

if x =���0
= conj c(F)(arctanc(F)(x+++ �̂ � 0)

if x0 =���0 and x 6=���0
= signbF (x) � downF (�=2)

if (x 2 f�1�1�1;+1+1+1g and x0 2 F [f�1�1�1;+1+1+1g) or
(x 2 F [f�1�1�1;+1+1+1g and x0 2 f�1�1�1;+1+1+1g)

= in�nitary(downF (�=2) +++ �̂ � (+1+1+1))
if x = 0 and x0 = 1

= in�nitary(downF (�=2) +++ �̂ � (�1�1�1))
if x = 0 and x0 = �1

= no resultc(F)(x+++ �̂ � x0)

otherwise

NOTE { The inverse of tan is multi-valued, the real part may have any integer multiple of
2 � � (even any integer multiple of �) added to it, and the result is also in the solution set.
The arctan function (returning the principal value for the inverse) branch cuts at f̂� � x0 j x0 2
F and jx0j > 1g. Thus arctanc(F)(0+++ �̂ � x0) 6= arctanc(F)(���0+++ �̂ � x0) when jx0j > 1.

5.3.2 Operations for radian trigonometric elementary functions 25

ISO/IEC WD 10967-3.1:2000(E) Working draft

5.3.2.11 Radian arc cotangent

The arccoti(F) operation:

arccoti(F) : i(F)! i(F) [funder
ow; in�nitaryg
arccoti(F)(̂� � x0) = �̂ � arccothF (x

0)

The arccot�c(F) approximation helper function:

arccot�c(F) : C ! C
arccot�c(F)(z) returns a close approximation to arccot(z) in C with maximum errormax error tanc(F).

Further requirements on the arccot�c(F) approximation helper function are:

arccot�c(F)(conj(z)) = conj(arccot�c(F)(z)) if z 2 C
arccot�c(F)(�z) = �arccot�c(F)(z) if z 2 C
Re(arccot�c(F)(̂� � x0)) = �=2 if x0 2 R and jx0j < 1

The relationship to the arccot�F and arccoth�F approximation helper functions in an associated
library for real-valued operations shall be:

arccot�c(F)(x) = arccot�F (x) if x 2 R
arccot�c(F)(̂� � x0) = �̂ � arccoth�F (�x0) if x0 2 R

The arccot#c(F) range limitation helper function:

arccot#c(F)(z) = maxfupF (��=2);minfRe(arccot�F (z)); downF (�=2)gg + �̂ � Im(arccot�F (z))
The arccotc(F) operation:

arccotc(F) : c(F)! c(F) [funder
ow; in�nitaryg
arccotc(F)(x+++ �̂ � x0)

= result�c(F)(arccot
#
c(F)(x+ �̂ � x0)); nearestF)

if x+++ �̂ � x0 2 c(F)
= negc(F)(arccotc(F)(0 +++ �̂ � negF (x

0))

if x =���0
= conj c(F)(arccotc(F)(x+++ �̂ � 0)

if x0 =���0 and x 6=���0
= mulF (signbF (x); 0) +++ �̂ � mulF (signbF (x

0); 0)
if (x 2 f�1�1�1;+1+1+1g and x0 2 F [f�1�1�1;+1+1+1g) or

(x 2 F [f�1�1�1;+1+1+1g and x0 2 f�1�1�1;+1+1+1g)
= in�nitary(downF (�=2); x) +++ �̂ � (+1+1+1)

if x0 = �1 and x = 0
= in�nitary(downF (�=2); x) +++ �̂ � (�1�1�1)

if x0 = 1 and x = 0
= no resultc(F)(x+++ �̂ � x0)

otherwise

NOTE { The inverse of cot is multi-valued, the real part may have any integer multiple of
2 � � (even any integer multiple of �) added to it, and the result is also in the solution set.
The arccot function (returning the principal value for the inverse) branch cuts at f̂� � x0 j x0 2
R and jx0j < 1g. Thus arccotc(F)(0+++ �̂ �x0) 6= arccotc(F)(���0+++ �̂ �x0) when jx0j < 1 or x0 =���0.

26 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

5.3.2.12 Radian arc secant

The arcsec�c(F) approximation helper function:

arcsec�c(F) : C ! C
arcsec�c(F)(z) returns a close approximation to arcsec(z) in C with maximum errormax error tanc(F).

Further requirements on the arcsec�c(F) approximation helper function are:

arcsec�c(F)(conj(z)) = conj(arcsec�c(F)(z)) if z 2 C
The relationship to the arcsec�F and arcsech�F approximation helper functions in an associated

library for real-valued operations shall be:

arcsec�c(F)(x) = arcsec�F (x) if x 2 R
The arcsec#c(F) range limitation helper function:

arcsec#c(F)(z) = minfRe(arcsec�F (z)); downF (�=2)g + �̂ � Im(arcsec�F (z)) if Re(z) > 1

= minfRe(arcsec�F (z)); downF (�)g+++ �̂ � Im(arcsec�F (z)) if Re(z) 6 �1
= arcsecc(F)(z) otherwise

The arcsecc(F) operation:

arcsecc(F) : c(F)! c(F) [funder
ow; in�nitaryg
arcsecc(F)(x+++ �̂ � x0)

= result�c(F)(arcsec
#
c(F)(x+ �̂ � x0)); nearestF)

if x+++ �̂ � x0 2 c(F)
= arcsecc(F)(0 +++ �̂ � negF (x

0))

if x =���0
= conj c(F)(arcsecc(F)(x+++ �̂ � 0))

if x0 =���0 and x 6=���0
= arccosc(F)(divc(F)(1; x+++ �̂ � x0))

if x 2 f�1�1�1;+1+1+1g and x0 2 F [f�1�1�1;+1+1+1g
= arccosc(F)(divc(F)(1; x+++ �̂ � x0))

if x0 2 f�1�1�1;+1+1+1g and x 2 F [f�1�1�1;+1+1+1g
= in�nitary(?+++ �̂ � (+1+1+1))

if x0 = 0 and x = 0
= no resultc(F)(x+++ �̂ � x0)

otherwise

NOTE { The inverse of sec is multi-valued, the real part may have any integer multiple of
2 � � added to it, and the result is also in the solution set. The arcsec function (returning
the principal value for the inverse) branch cuts at fx j x 2 R and � 1 < x < 1g. Thus
arcsecc(F)(x+++ �̂ � 0) 6= arcsecc(F)(x+++ �̂ � (���0)) when �1 < x < 1 or x =���0.

5.3.2.13 Radian arc cosecant

The arccsci(F) operation:

arccsci(F) : i(F)! i(F) [funder
ow; in�nitaryg
arccsci(F)(̂� � x0) = �̂ � arccschF (x

0)

The arccsc�c(F) approximation helper function:

arccsc�c(F) : C ! C
arccsc�c(F)(z) returns a close approximation to arccsc(z) in C with maximum errormax error tanc(F).

Further requirements on the arccsc�c(F) approximation helper function are:

5.3.2 Operations for radian trigonometric elementary functions 27

ISO/IEC WD 10967-3.1:2000(E) Working draft

arccsc�c(F)(conj(z)) = conj(arccsc�c(F)(z)) if z 2 C
arccsc�c(F)(�z) = �arccsc�c(F)(z) if z 2 C

The relationship to the arccsc�F and arccsch�F approximation helper functions in an associated
library for real-valued operations shall be:

arccsc�c(F)(x) = arccsc�F (x) if x 2 R
arccsc�c(F)(̂� � x0) = �̂ � arccsch�F (�x0) if x0 2 R

The arccsc#c(F) range limitation helper function:

arccsc#
c(F)

(z) = maxfupF (��=2);minfRe(arccsc�F (z)); downF (�=2)gg + �̂ � Im(arccsc�F (z))
The arccscc(F) operation:

arccscc(F) : c(F)! c(F) [funder
ow; in�nitaryg
arccscc(F)(x+++ �̂ � x0)

= result�c(F)(arccsc
#
c(F)(x+ �̂ � x0)); nearestF)

if x+++ �̂ � x0 2 c(F)
= negc(F)(arccscc(F)(0 +++ �̂ � negF (x

0))

if x =���0
= conj c(F)(arccscc(F)(x+++ �̂ � 0)

if x0 =���0 and x 6=���0
= arcsinc(F)(divc(F)(1; x+++ �̂ � x0))

if x 2 f�1�1�1;+1+1+1g and x0 2 F [f�1�1�1;+1+1+1g
= arcsinc(F)(divc(F)(1; x+++ �̂ � x0))

if x0 2 f�1�1�1;+1+1+1g and x 2 F [f�1�1�1;+1+1+1g
= in�nitary(?+++ �̂ � (�1�1�1))

if x = 0 and x0 = 0
= no resultc(F)(x+++ �̂ � x0)

otherwise

NOTE { The inverse of csc is multi-valued, the real part may have any integer multiple of
2 � � added to it, and the result is also in the solution set. The arccsc function (returning
the principal value for the inverse) branch cuts at fx j x 2 R and � 1 < x < 1g. Thus
arccscc(F)(x+++ �̂ � 0) 6= arccscc(F)(x+++ �̂ � (���0)) when �1 < x < 1 or x =���0.

5.3.3 Operations for hyperbolic elementary functions

The complex trigonometric operations which are used in the speci�cations below are speci�ed in
clause 5.3.2. Note that the correspondences speci�ed here are exact, not approximate.

5.3.3.1 Hyperbolic normalisation

radhF : F ! F

radhF (x) = x

radhi(F) : i(F)! i(F) [funder
ow;absolute precision under
owg
radhi(F)(̂� � x0) = �̂ � radF (x

0)

radhc(F) : c(F)! c(F) [funder
ow;absolute precision under
owg
radhc(F)(x+++ �̂ � x0)

= �̂ � radc(F)(x
0+++ �̂ � negF (x))

28 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

NOTE { radc(F) is de�ned in clause 5.3.2.1.

5.3.3.2 Hyperbolic sine

sinhi(F) : i(F)! i(F) [funder
ow;absolute precision under
owg
sinhi(F)(̂� � x

0) = �̂ � (sinF (x
0))

sinhc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
sinhc(F)(x+++ �̂ � x0)

= �̂ � (sinc(F)(x
0+++ �̂ � negF (x)))

5.3.3.3 Hyperbolic cosine

coshi(F) : i(F)! F [funder
ow;absolute precision under
owg
coshi(F)(̂� � x0) = cosF (x

0)

coshc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
coshc(F)(x+++ �̂ � x0)

= cosc(F)(x
0+++ �̂ � negF (x))

5.3.3.4 Hyperbolic tangent

tanhi(F) : i(F)! i(F) [funder
ow;over
ow;absolute precision under
owg
tanhi(F)(̂� � x

0) = �̂ � (tanF (x
0))

tanhc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
tanhc(F)(x+++ �̂ � x0)

= �̂ � (tanc(F)(x
0+++ �̂ � negF (x)))

5.3.3.5 Hyperbolic cotangent

cothi(F) : i(F)! i(F) [funder
ow;over
ow; in�nitary;absolute precision under
owg
cothi(F)(̂� � x

0) = �̂ � (cotF (negF (x
0)))

cothc(F) : c(F)! c(F) [funder
ow;over
ow; in�nitary;absolute precision under
owg
cothc(F)(x+++ �̂ � x0)

= �̂ � (cotc(F)(negF (x
0) +++ �̂ � x))

5.3.3 Operations for hyperbolic elementary functions 29

ISO/IEC WD 10967-3.1:2000(E) Working draft

5.3.3.6 Hyperbolic secant

sechi(F) : i(F)! F [funder
ow;over
ow;absolute precision under
owg
sechi(F)(̂� � x

0) = secF (negF (x
0))

sechc(F) : c(F)! c(F) [funder
ow;over
ow;absolute precision under
owg
sechc(F)(x+++ �̂ � x0)

= secc(F)(negF (x
0) +++ �̂ � x)

5.3.3.7 Hyperbolic cosecant

cschi(F) : i(F)! i(F) [funder
ow;over
ow; in�nitary;absolute precision under
owg
cschi(F)(̂� � x

0) = �̂ � (cscF (negF (x
0)))

cschc(F) : c(F)! c(F) [funder
ow;over
ow; in�nitary;absolute precision under
owg
cschc(F)(x+++ �̂ � x0)

= �̂ � (cscc(F)(negF (x
0) +++ �̂ � x))

5.3.3.8 Inverse hyperbolic sine

arcsinhi(F) : i(F)! i(F) [funder
owg
arcsinhi(F)(̂� � x

0)

= �̂ � (arcsinF (x
0))

arcsinhc(F) : c(F)! c(F) [funder
owg
arcsinhc(F)(x+++ �̂ � x0)

= �̂ � (arcsinc(F)(x
0+++ �̂ � negF (x)))

NOTE { The inverse of sinh is multi-valued, the imaginary part may have any integer
multiple of 2 � � added to it, and the result is also in the solution set. The arcsinh function
(returning the principal value for the inverse) branch cuts at f̂� � x0 j x0 2 R and jx0j > 1g.
Thus arcsinhc(F)(0+++ �̂ � x0) 6= arcsinhc(F)(���0+++ �̂ � x0) when jx0j > 1.

5.3.3.9 Inverse hyperbolic cosine

arccoshc(F) : c(F)! c(F)

arccoshc(F)(x+++ �̂ � x0)

= �̂ � (arccosc(F)(x+++ �̂ � x0))

if (x0 2 F and x0 > 0) or x0 =+1+1+1
= negc(F)(̂� � (arccosc(F)(x+++ �̂ � x0)))

if (x0 2 F and x0 < 0) or x0 2 f�1�1�1;���0g
NOTE { The inverse of cosh is multi-valued, the imaginary part may have any integer
multiple of 2 � � added to it, and the result is also in the solution set. The arccosh function
(returning the principal value for the inverse) branch cuts at fx j x 2 R and x < 1g. Thus
arccoshc(F)(x+++ �̂ � 0) 6= arccoshc(F)(x+++ �̂ � (���0)) when x < 1 or x =���0.

30 Speci�cations for complex datatypes and operations

Working draft ISO/IEC WD 10967-3.1:2000(E)

5.3.3.10 Inverse hyperbolic tangent

arctanhi(F) : i(F)! i(F) [funder
ow; in�nitaryg
arctanhi(F)(̂� � x

0)

= �̂ � (arctanF (x
0))

arctanhc(F) : c(F)! c(F) [funder
ow; in�nitaryg
arctanhc(F)(x+++ �̂ � x0)

= �̂ � (arctanc(F)(x
0+++ �̂ � negF (x)))

NOTE { The inverse of tanh is multi-valued, the imaginary part may have any integer
multiple of 2 � � (even any integer multiple of �) added to it, and the result is also in the
solution set. The arctanh function (returning the principal value for the inverse) branch cuts
at fx j x 2 R and jxj > 1g. Thus arctanhc(F)(x +++ �̂ � 0) 6= arctanhc(F)(x+++ �̂ � (���0)) when
jxj > 1.

5.3.3.11 Inverse hyperbolic cotangent

arccothi(F) : i(F)! i(F) [funder
ow; in�nitaryg
arccothi(F)(̂� � x0)

= �̂ � (arccotF (negF (x
0)))

arccothc(F) : c(F)! c(F) [funder
ow; in�nitaryg
arccothc(F)(x+++ �̂ � x0)

= �̂ � (arccotc(F)(negF (x
0) +++ �̂ � x))

NOTE { The inverse of coth is multi-valued, the imaginary part may have any integer
multiple of 2 � � (even any integer multiple of �) added to it, and the result is also in the
solution set. The arccoth function (returning the principal value for the inverse) branch cuts
at fx j x 2 R and jxj < 1g. Thus arccothc(F)(x+++ �̂ �0) 6= arccothc(F)(x+++ �̂ � (���0)) when jxj < 1
or x =���0.

5.3.3.12 Inverse hyperbolic secant

arcsechc(F) : c(F)! c(F) [funder
ow; in�nitaryg
arcsechc(F)(x+++ �̂ � x0)

= �̂ � (arcsecc(F)(x+++ �̂ � x0))

if (x0 2 F and x0 > 0) or x0 =+1+1+1
= negc(F)(̂� � (arcsecc(F)(x+++ �̂ � x0)))

if (x0 2 F and x0 < 0) or x0 2 f�1�1�1;���0g
NOTE { The inverse of sech is multi-valued, the imaginary part may have any integer multiple
of 2 � � added to it, and the result is also in the solution set. The arcsech function (returning
the principal value for the inverse) branch cuts at fx j x 2 R and x 6 0 or x > 1g. Thus
arcsechc(F)(x+++ �̂ � 0) 6= arcsechc(F)(x+++ �̂ � (���0)) when x 6 0 or x =���0 or x > 1.

5.3.3.13 Inverse hyperbolic cosecant

arccschi(F) : i(F)! i(F) [funder
ow; in�nitaryg
arccschi(F)(̂� � x

0)

= �̂ � (arccscF (negF (x
0)))

5.3.3 Operations for hyperbolic elementary functions 31

ISO/IEC WD 10967-3.1:2000(E) Working draft

arccschc(F) : c(F)! c(F) [funder
ow; in�nitaryg
arccschc(F)(x+++ �̂ � x0)

= �̂ � (arccscc(F)(negF (x
0) +++ �̂ � x))

NOTE { The inverse of csch is multi-valued, the imaginary part may have any integer
multiple of 2 � � added to it, and the result is also in the solution set. The arccsch function
(returning the principal value for the inverse) branch cuts at f̂� � x0 j x0 2 R and jx0j < 1g.
Thus arccschc(F)(0+++ �̂ � x0) 6= arccschc(F)(���0+++ �̂ � x0) when �1 < x0 < 1 or x0 =���0.

5.4 Operations for conversion between numeric datatypes

5.4.1 Integer to complex integer conversions

Let I be the non-special value set for an integer datatype.

convertI!c(I) : I ! c(I)

convertI!c(I)(x)

= x+++ �̂ � 0

converti(I)!c(I) : i(I)! c(I)

converti(I)!c(I)(̂� � x)

= 0+++ �̂ � x

5.4.2 Floating point to complex
oating point conversions

Let F be the non-special value set for a
oating point datatype.

The convertF!c(F) operation:

convertF!c(F) : F ! c(F

convertF!c(F)(x)

= x+++ �̂ � 0

The converti(F)!c(F) operation:

converti(F)!c(F) : i(F)! c(F)

converti(F)!c(F)(̂� � x)

= 0+++ �̂ � x

6 Noti�cation

Noti�cation is the process by which a user or program is informed that an arithmetic operation
cannot return a suitable numeric result. Speci�cally, a noti�cation shall occur when any arith-
metic operation returns an exceptional value. Noti�cation shall be performed according to the
requirements of clause 6 of part 1.

An implementation shall not give noti�cations for operations conforming to this part, unless
the speci�cation requires that an exceptional value results for the given arguments.

The default method of noti�cation should be recording of indicators.

32 Noti�cation

Working draft ISO/IEC WD 10967-3.1:2000(E)

6.1 Continuation values

If noti�cations are handled by a recording of indicators, in the event of noti�cation the imple-
mentation shall provide a continuation value to be used in subsequent arithmetic operations.
Continuation values may be in i(I), c(I), i(F) or c(F) (as appropriate), or be special values
(where the real or imaginary component is ���0, �1�1�1, +1+1+1, or a qNaN).

Floating point datatypes that satisfy the requirements of IEC 60559 have special values in
addition to the values in F . These are: ���0, +1+1+1, �1�1�1, signaling NaNs (sNaN), and quiet
NaNs (qNaN). Such values may be components of complex
oating point datatypes, and may
be included in values passed as arguments to operations, and used as results or continuation values.
Floating point types that do not fully conform to IEC 60559 can also have values corresponding
to ���0, +1+1+1, �1�1�1, or NaN.

7 Relationship with language standards

A computing system often provides some of the operations speci�ed in this part within the context
of a programming language. The requirements of the present standard shall be in addition to those
imposed by the relevant programming language standards.

This part does not de�ne the syntax of arithmetic expressions. However, programmers need to
know how to reliably access the operations speci�ed in this Part.

NOTE 1 { Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation that should be used to invoke an operation
speci�ed in this Part and made available. An implementation should document the notation that
should be used to invoke an operation speci�ed in this Part and that could be made available.

NOTE 2 { For example, the complex radian arc sine operation for an argument x (arcsinc(F)(x))
might be invoked as

arcsin(x) in Ada [7]
casin(x) in C [13]
asin(x) in Fortran [18] and C++ [14]
(asin x) in Common Lisp [38]

with a suitable expression of the argument (x).

An implementation shall document the semantics of arithmetic expressions in terms of compo-
sitions of the operations speci�ed in clause 5 of this Part and in clause 5 of Part 1.

Compilers often \optimize" code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include

a) Insertion of operations, such as datatype conversions or changes in precision.

b) Replacing operations (or entire subexpressions) with others, such as \cos(-x)"! \cos(x)"
(exactly the same result) or \pi - arccos(x)" ! \arccos(-x)" (more accurate result).

c) Evaluating constant subexpressions.

d) Eliminating unneeded subexpressions.

Only transformations which alter the semantics of an expression (the values produced, and the
noti�cations generated) need be documented. Only the range of permitted transformations need
be documented. It is not necessary to describe the speci�c choice of transformations that will be
applied to a particular expression.

6.1 Continuation values 33

ISO/IEC WD 10967-3.1:2000(E) Working draft

The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

8 Documentation requirements

In order to conform to this Part, an implementation shall include documentation providing the
following information to programmers.

NOTE 1 { Much of the documentation required in this clause is properly the responsibility of
programming language or binding standards. An individual implementation would only need
to provide details if it could not cite an appropriate clause of the language or binding standard.

a) A list of the provided operations that conform to this part.

b) For each maximum error parameter, the value of that parameter or de�nition of that param-
eter function. Only maximum error parameters that are relevant to the provided operations
need be given.

c) The value of the parameters big angle rF and big angle uF . Only big angle parameters that
are relevant to the provided operations need be given.

d) For the nearestF function, the rule used for rounding halfway cases, unless iec 559F is �xed
to true.

e) For each conforming operation, the continuation value provided for each noti�cation condi-
tion. Speci�c continuation values that are required by this Part need not be documented.
If the noti�cation mechanism does not make use of continuation values (see clause 6), con-
tinuation values need not be documented.

NOTE 2 { Implementations that do not provide in�nities orNaNs will have to document
any continuation values used in place of such values.

f) For each conforming operation, how the results depend on the rounding mode, if rounding
modes are provided. Operations may be insensitive to the rounding mode, or sensitive to it,
but even then need not heed the rounding mode.

g) For each conforming operation, the notation to be used for invoking that operation.

h) For each maximum error parameter, the notation to be used to access that parameter.

i) The notation to be used to access the parameters big angle rF and big angle uF .

j) For each of the provided operations where this Part speci�es a relation to another operation
speci�ed in this Part, the binding for that other operation.

k) For numerals conforming to this Part, which available string conversion operations, including
reading from input, give exactly the same conversion results, even if the string syntaxes for
`internal' and `external' numerals are di�erent.

Since the integer and
oating point datatypes used in conforming operations shall satisfy the
requirements of Part 1, the following information shall also be provided by any conforming imple-
mentation.

l) The means for selecting the modes of operation that ensure conformity.

m) The translation of arithmetic expressions into combinations of the operations provided by
any part of ISO/IEC 10967, including any use made of higher precision. (See clause 7 of
Part 1.)

34 Documentation requirements

Working draft ISO/IEC WD 10967-3.1:2000(E)

n) The methods used for noti�cation, and the information made available about the noti�cation.
(See clause 6 of Part 1.)

o) The means for selecting among the noti�cation methods, and the noti�cation method used
in the absence of a user selection. (See clause 6.3 of Part 1.)

p) When \recording of indicators" is the method of noti�cation, the datatype used to represent
Ind (see clause 6.1.2 of Part 1), the method for denoting the values of Ind, and the notation
for invoking each of the \indicator" operations. E is the set of noti�cation indicators. The
association of values in Ind with subsets of E must be clear. In interpreting clause 6.1.2 of
Part 1, the set of indicators E shall be interpreted as including all exceptional values listed
in the signatures of conforming operations. In particular, E may need to contain in�nitary
and absolute precision under
ow.

8. Documentation requirements 35

ISO/IEC WD 10967-3.1:2000(E) Working draft

36 Documentation requirements

Working draft ISO/IEC WD 10967-3.1:2000(E)

Annex A

(normative)

Partial conformity

If an implementation of an operation ful�lls all relevant requirements according to the main
normative text in this Part, except the ones relaxed in this Annex, the implementation of that
operation is said to partially conform to this Part.

Conformity to this Part shall not be claimed for operations that only ful�ll Partial conformity.

Partial conformity shall not be claimed for operations that relax other requirements than those
relaxed in this Annex.

A.1 Maximum error relaxation

This part has the following maximum error requirements for conformity.

max error mulc(F) 2 [0:5; ??]

max error divc(F) 2 [0:5; ??]

max error expc(F) 2 [0:5; ??]

max error powerc(F) 2 [0:5; ??]

max error sinc(F) 2 [0:5; ??]

max error tanc(F) 2 [0:5; ??]

In a partially conforming implementation the maximum error parameters may be greater than
what is speci�ed by this part. The maximum error parameter values given by an implementation
shall still adequately re
ect the accuracy of the relevant operations, if a claim of partial conformity
is made.

A partially conforming implementation shall document which maximum error parameters have
greater values than speci�ed by this part, and their values.

A.2 Extra accuracy requirements relaxation

This Part has a number of extra accuracy requirements. These are detailed in the paragraphs
beginning \Further requirements on the op�F approximation helper function are:".

In a partially conforming implementation these further requirements need not be ful�lled. The
values returned must still be within the maximum error bounds that are given by the maximum
error parameters, if a claim of partial conformity is made.

A partially conforming implementation shall document which extra accuracy requirements are
not ful�lled by the implementation.

A.3 Partial conformity to part 1 or to part 2

...

A. Partial conformity 37

ISO/IEC WD 10967-3.1:2000(E) Working draft

38 Partial conformity

Working draft ISO/IEC WD 10967-3.1:2000(E)

Annex B

(informative)

Rationale

This annex explains and clari�es some of the ideas behind Information technology { Language
independent arithmetic { Part 2: Elementary numerical functions (LIA-2).

B.1 Scope

B.1.1 Inclusions

LIA-2 is intended to de�ne the meaning of some operations on integer and
oating point types
as speci�ed in LIA-1 (ISO/IEC 10967-1), in addition to the operations speci�ed in LIA-1. LIA-2
does not specify operations for any additional arithmetic datatypes, though �xed point datatypes
are used in some of the speci�cations for conversion operations.

The speci�cations for the operations covered by LIA-2 are given in suÆcient detail to

a) support detailed and accurate numerical analysis of arithmetic algorithms,

b) enable a precise determination of conformity or non-conformity, and

c) prevent exceptions (like over
ow) from going undetected.

LIA-2 does in no way prevent language standards or implementations including further arith-
metic operations, other variations of included arithmetic operations, or the inclusion of further
arithmetic datatypes, like rational number or �xed point datatypes. Some of these may become
the topic of standardisation in other parts of LIA.

B.1.2 Exclusions

LIA-2 is not concerned with techniques for the implementation of numerical functions. Even
when an LIA-2 speci�cation is made in terms of other LIA-1 or LIA-2 operations, that does not
imply a requirement that an implementation implements the operation in terms of those other
operations. It is suÆcient that the result (returned value or returned continuation value, and
exception behaviour) is as if it was implemented in terms of those other operations.

LIA-2 does not provide speci�cations for operations which involve no arithmetic processing, like
assignment and parameter passing, though any implicit conversions done in association with such
operations are in scope. The implicit conversions should be made available to the programmer as
explicit conversions.

LIA-2 does not cover operations for the support of domains such as linear algebra, statistics,
and symbolic processing. Such domains deserve separate standardisation, if standardised.

LIA-2 only covers operations that involve integer or
oating point datatypes, as speci�ed in
LIA-1, and in some cases also a Boolean datatype, but then only as result. The operations covered
by LIA-2 are often to some extent covered by programming language standards, like the operations
sin, cos, tan, arctan, and so on.

B. Rationale 39

ISO/IEC WD 10967-3.1:2000(E) Working draft

B.2 Conformity

Conformity to this standard is dependent on the existence of language binding standards. Each
programming language committee (or other organisation responsible for a programming language
or other speci�cation to which LIA-1 and LIA-2 may apply) is encouraged to produce a binding
covering at least those operations already required by the programming language (or similar) and
also speci�ed in LIA-2.

The term \programming language" is here used in a generalised sense to include other comput-
ing entities such as calculators, spread sheets, page description languages, web-script languages,
and database query languages to the extent that they provide the operations covered by LIA-2.

Suggestions for bindings are provided in Annex C. Annex C has partial binding examples
for a number of existing programming languages and LIA-2. In addition to the bindings for the
operations in LIA-2, it is also necessary to provide bindings for the maximum error parameters
and big angle parameters speci�ed by LIA-2. Annex C contains suggestions for these bindings. To
conform to this standard, in the absence of a binding standard, an implementation should create
a binding, following the suggestions in Annex C.

B.3 Normative references

The referenced IEC 60559 standard is identical to the IEEE 754 standard and the former IEC 559
standard.

B.4 Symbols and de�nitions

B.4.1 Symbols

B.4.1.1 Sets and intervals

The interval notation is in common use. It has been chosen over the other commonly used interval
notation because the chosen notation has no risk of confusion with the pair notation.

B.4.1.2 Operators and relations

Note that all operators, relations, and other mathematical notation used in LIA-2 is used in their
conventional exact mathematical sense. They are not used to stand for operations speci�ed by
IEC 60559, LIA-1, LIA-2, or, with the exception of programme excerpts which are clearly marked,
any programming language. E.g. x=u stands for the mathematically exact result of dividing x by
u, whether that value is representable in any
oating point datatype or not, and x=u 6= divF (x; u)
is often the case. Likewise, = is the mathematical equality, not the eqF operation: 0 6=���0, while
eqF (0;���0) = true.

B.4.1.3 Mathematical functions

The elementary functions named sin, cos, etc., used in LIA-2 are the exact mathematical functions,
not any approximation. The approximations to these mathematical functions are introduced in
clauses 5.3 and 5.4 and are written in a way clearly distinct from the mathematical functions. E.g.,
sin�F , cos

�

F , etc., which are unspeci�ed mathematical functions approximating the targeted exact
mathematical functions to a speci�ed degree; sinF , cosF , etc., which are the operations speci�ed
by LIA-2 based on the respecitive approximating function; sin, cos, etc., which are programming
language names bound to LIA-2 operations. sin is thus very di�erent from sin.

40 Rationale

Working draft ISO/IEC WD 10967-3.1:2000(E)

B.4.1.4 Datatypes and exceptional values

The sequence types [I] and [F] appear as input datatypes to a few operations: max seqI ,min seqI ,
gcd seqI , lcm seqI , max seqF , min seqF , mmax seqF , and mmin seqF .

In e�ect, a sequence is a �nite linearly ordered collection of elements which can be indexed
from 1 to the length of the sequence. Equality of two or more elements with di�erent indices
is possible. Sequences are used in LIA-2 as an abstraction of arrays, lists, other kinds of one-
dimensional sequenced collections, and even variable length argument lists. As used in LIA-2 the
order of the elements and number of occurrences of each element, as long as it is more than one,
does not matter, so multi-sets (bags) and sets also qualify.

LIA-2 uses a modi�ed set of exceptional values compared to LIA-1. Instead of LIA-1's un-
de�ned, LIA-2 uses invalid and in�nitary. IEC 60559 distinguishes between invalid and di-
vide by zero (the latter is called in�nitary by LIA-2). The distinction is valid and should be
recognised, since in�nitary indicates that an in�nite but exact result is (or can be, if it were
available) returned, while invalid indicates that a result in the target datatype (extended with
in�nities) cannot, or should not, be returned with adequate accuracy.

LIA-1 distinguished between integer over
ow and
oating over
ow. This distinction is
moot, since no distinction was made between integer unde�ned and
oating unde�ned. In
addition, continuing this distinction would force LIA to start distinguishing not only integer
over
ow and
oating over
ow, but also �xed over
ow, complex
oating over
ow, com-
plex integer over
ow, etc. Further, there is no general consensus that maintaining this distinc-
tion is useful, and many programming languages do not require a distinction. A binding standard
can still maintain this distinction, if desired.

LIA allows for three methods for handing noti�cations: recording of indicators, change of
control
ow (returnable or not), and termination of program. The preferred method is recording of
indicators. This allows the computation to continue using the continuation values. For under
ow
and in�nitary noti�cations this course of action is strongly preferred, provided that a suitable
continuation value can be represented in the result datatype.

Not all occurrences of the same exceptional value need be handled the same. There may be
explicit mode changes in how noti�cations are handled, and there may be implicit changes. E.g.,
invalid without a speci�ed (by LIA-2 or binding) continuation value to cause change of control

ow (like an Ada [7] exception), while invalid with a speci�ed continuation value use recording
of indicators. This should be speci�ed by bindings or by implementations.

The operations may return any of the exceptional values over
ow, under
ow, invalid,
in�nitary, or absolute precision under
ow. This does not imply that the implemented op-
erations are to actually return any of these values. When these values are returned according to
the LIA speci�cation, that means that the implementation is to perform a noti�cation handling
for that exceptional value. If the noti�cation handling is by recording of indicators, then what is
actually returned by the implemented operation is the continuation value.

B.4.2 De�nitions of terms

Note the LIA distinction between exceptional values, exceptions, and exception handling (hand-
ling of noti�cation by non-returnable change of control
ow; as in e.g. Ada). LIA exceptional
values are not the same as Ada exceptions, nor are they the same as IEC 60559 special values.

Note also the LIA distinction between denormal and subnormal. Subnormal include zero values,
while denormal does not.

B.4.2 De�nitions of terms 41

ISO/IEC WD 10967-3.1:2000(E) Working draft

B.5 Speci�cations for the complex datatypes and operations

42 Rationale

Working draft ISO/IEC WD 10967-3.1:2000(E)

Annex C

(informative)

Example bindings for speci�c languages

This annex describes how a computing system can simultaneously conform to a language stan-
dard (or publicly available speci�cation) and to LIA-3. It contains suggestions for binding the
\abstract" operations speci�ed in LIA-3 to concrete language syntax. The format used for these
example bindings in this annex is a short form version, suitable for the purposes of this annex. An
actual binding is under no obligation to follow this format. An actual binding should, however,
as in the bindings examples, give the LIA-3 operation name, or parameter name, bound to an
identi�er by the binding.

Portability of programs can be improved if two conforming LIA-3 systems using the same
language agree in the manner with which they adhere to LIA-3. For instance, LIA-3 requires that
the parameter big angle rF be provided (if any conforming radian trigonometric operations are
provided), but if one system provides it by means of the identi�er BigAngle and another by the
identi�er MaxAngle, portability is impaired. Clearly, it would be best if such names were de�ned
in the relevant language standards or binding standards, but in the meantime, suggestions are
given here to aid portability.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various language standards committees. Until binding standards are in
place, implementors can promote \de facto" portability by following these suggestions on their
own.

The languages covered in this annex are

Ada
C
C++
Fortran
Haskell
Java
Common Lisp
ISLisp
Modula-2
PL/I
SML

This list is not exhaustive. Other languages and other computing devices (like `scienti�c'
calculators, `web script' languages, and database `query languages') are suitable for conformity to
LIA-2.

In this annex, the parameters, operations, and exception behaviour of each language are ex-
amined to see how closely they �t the requirements of LIA-2. Where parameters, constants, or
operations are not provided by the language, names and syntax are suggested. (Already provided
syntax is marked with a ?.)

This annex describes only the language-level support for LIA-2. An implementation that wishes
to conform must ensure that the underlying hardware and software is also con�gured to conform
to LIA-2 requirements.

A complete binding for LIA-2 will include, or refer to, a binding for LIA-1. In turn, a complete
binding for the LIA-1 may include, or refer to, a binding for IEC 60559. Such a joint LIA-2/LIA-

C. Example bindings for speci�c languages 43

ISO/IEC WD 10967-3.1:2000(E) Working draft

1/IEC 60559 binding should be developed as a single binding standard. To avoid con
ict with
ongoing development, only the LIA-2 speci�c portions of such a binding are exampli�ed in this
annex.

Most language standards permit an implementation to provide, by some means, the parameters
and operations required by LIA-2 that are not already part of the language. The method for ac-
cessing these additional parameters and operations depends on the implementation and language,
and is not speci�ed in LIA-2 nor exampli�ed in this annex. It could include external subroutine
libraries; new intrinsic functions supported by the compiler; constants and functions provided as
global \macros"; and so on. The actual method of access through libraries, macros, etc. should
of course be given in a real binding.

Most language standards do not constrain the accuracy of elementary numerical functions, or
specify the subsequent behaviour after an arithmetic noti�cation occurs.

In the event that there is a con
ict between the requirements of the language standard and
the requirements of LIA-2, the language binding standard should clearly identify the con
ict and
state its resolution of the con
ict.

C.1 Ada

The programming language Ada is de�ned by ISO/IEC 8652:1995, Information Technology {
Programming Languages { Ada [7].

An implementation should follow all the requirements of LIA-3 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to LIA-3 for that operation or parameter. For each
of the marked items a suggested identi�er is provided.

The Ada datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of Ada has at least one integer datatype, and at least one
oating point
datatype. The notations INT and FLT are used to stand for the names of one of these datatypes
(respectively) in what follows.

Ada has an overloading system, so that the same name can be used for di�erent types of
arguments to the operations.

The LIA-3 complex integer operations are listed below, along with the syntax used to invoke
them:

itimesi(I)(x) ..x y
itimesc(I)(x) ..x y
reI(x) re(x) y
rei(I)(x) re(x) y
rec(I)(x) re(x) y
imI(x) im(x) y
imi(I)(x) im(x) y
imc(I)(x) im(x) y
plusitimesI(x; y) ..x y y
negi(I)(x) -x y
negc(I)(x) -x y
conjI(x) conj(x) y
conji(I)(x) conj(x) y
conjc(I)(x) conj(x) y
addi(I)(x; y) x + y y

44 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

addc(I)(x; y) x + y y
subi(I)(x; y) x - y y
subc(I)(x; y) x - y y
muli(I)(x; y) x * y y
mulc(I)(x; y) x * y y
:eqi(I)(x; y) x = y y
eqc(I)(x; y) x = y y
:neqi(I)(x; y) x /= y y
neqc(I)(x; y) x /= y y
:absi(I)(x) abs(x) y
:signi(I)(x) sign(x) y

where x and y are expressions of type CINT.

The LIA-3 basic complex
oating point operations are listed below, along with the syntax used
to invoke them:

itimesF (x) i * x or j * x y
reF (x) Re(x) y
rei(F)(x) Re(x) y
rec(F)(x) Re(x) ?

imF (x) Im(x) y
imi(F)(x) Im(x) y
imc(F)(x) Im(x) ?

plusitimesF (x; y) Compose From Cartesian(x,y) ?
plusitimesF (x; y) x + i * y or x + j * y ?
:::F (x; y) Compose From Polar(x,y) ?
:::F (u; x; y) Compose From Polar(x,y,u) ?
negi(F)(x) - x ?

negc(F)(x) - x ?

conjF (x) Conjugate(x) y
conji(F)(x) Conjugate(x) ?

conjc(F)(x) Conjugate(x) ?

:addF;i(F)(x; y) x + y ?

:addF;c(F)(x; y) x + y ?

:addi(F);F (x; y) x + y ?

:addc(F);F (x; y) x + y ?

:addi(F);c(F)(x; y) x + y ?

:addc(F);i(F)(x; y) x + y ?

addi(F)(x; y) x + y ?

addc(F)(x; y) x + y ?

:subF;i(F)(x; y) x - y ?

:subF;c(F)(x; y) x - y ?

:subi(F);F (x; y) x - y ?

:subc(F);F (x; y) x - y ?

:subi(F);c(F)(x; y) x - y ?

:subc(F);i(F)(x; y) x - y ?

subi(F)(x; y) x - y ?

subc(F)(x; y) x - y ?

:mulF;i(F)(x; y) x * y ?

:mulF;c(F)(x; y) x * y ?

:muli(F);F (x; y) x * y ?

:mulc(F);F (x; y) x * y ?

C.1 Ada 45

ISO/IEC WD 10967-3.1:2000(E) Working draft

:muli(F);c(F)(x; y) x * y ?

:mulc(F);i(F)(x; y) x * y ?

muli(F)(x; y) x * y ?

:divF;i(F)(x; y) x / y ?

:divF;c(F)(x; y) x / y ?

:divi(F);F (x; y) x / y ?

:divc(F);F (x; y) x / y ?

:divi(F);c(F)(x; y) x / y ?

:divc(F);i(F)(x; y) x / y ?

divi(F)(x; y) x / y ?

eqi(F)(x; y) x = y ?

eqc(F)(x; y) x = y ?

neqi(F)(x; y) x /= y ?

neqc(F)(x; y) x /= y ?

...lt, gt, leq, geq on imaginary... ?
absi(F)(x) abs(x) ?

absc(F)(x) abs(x) or Modulus(x) ?

phaseF (x) Argument(x) y
phasei(F)(x) Argument(x) ?

phasec(F)(x) Argument(x) ?

:phaseuc(F)(u; x) Argument(x,u) ?

signi(F)(x) Sign(x) y
signc(F)(x) Sign(x) y

where x, y, and z are expressions of type CFLT.

The parameters for LIA-3 operations approximating real complex valued functions can be
accessed by the following syntax:

max err mulc(F) Err Mul(x) y
max err divc(F) Err Div(x) y
max err expc(F) Err Exp(x) y
max err powerc(F) Err Power(x) y
max err sinc(F) Err Sin(x) y
max err tanc(F) Err Tan(x) y

where x is an expression of type CFLT. Several of the parameter functions are constant for each
type (and library), the argument is then used only to di�erentiate among the
oating point types.

The LIA-3 elementary
oating point operations are listed below, along with the syntax used
to invoke them:

mulc(F)(x; y) x * y ?

divc(F)(x; y) x / y ?

:expi(F)(x) Exp(x) ?

expc(F)(x) Exp(x) ?

:poweri(F);I(b; a) b ** a ?

:powerc(F);I(x; a) x ** a ?

:powerc(F);F (b; y) b ** y ?

:powerF;c(F)(b; x) b ** x ?

powerc(F)(x; y) x ** y ?

sqrtc(F)(x) Sqrt(x) ?

46 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

lnc(F)(x) Log(x) ?

:logbasec(F)(b; x) Log(x, b) (note parameter order) y

radhF (x) RadH(x) y
radhi(F)(x) RadH(x) y
radhc(F)(x) RadH(x) y

sinhi(F)(x) SinH(x) y
sinhc(F)(x) SinH(x) ?

coshi(F)(x) CosH(x) y
coshc(F)(x) CosH(x) ?

tanhi(F)(x) TanH(x) y
tanhc(F)(x) TanH(x) ?

cothi(F)(x) CotH(x) y
cothc(F)(x) CotH(x) ?

sechi(F)(x) SecH(x) y
sechc(F)(x) SecH(x) y
cschi(F)(x) CscH(x) y
cschc(F)(x) CscH(x) y

arcsinhi(F)(x) ArcSinH(x) y
arcsinhc(F)(x) ArcSinH(x) ?

arccoshc(F)(x) ArcCosH(x) ?

arctanhi(F)(x) ArcTanH(x) y
arctanhc(F)(x) ArcTanH(x) ?

arccothi(F)(x) ArcCotH(x) y
arccothc(F)(x) ArcCotH(x) ?

arcsechc(F)(x) ArcSecH(x) y
arccschi(F)(x) ArcCscH(x) y
arccschc(F)(x) ArcCscH(x) y

radi(F)(x) Rad(x) y
radc(F)(x) Rad(x) y

sini(F)(x) Sin(x) y
sinc(F)(x) Sin(x) ?

cosi(F)(x) Cos(x) y
cosc(F)(x) Cos(x) ?

tani(F)(x) Tan(x) y
tanc(F)(x) Tan(x) ?

coti(F)(x) Cot(x) y
cotc(F)(x) Cot(x) ?

seci(F)(x) Sec(x) y
secc(F)(x) Sec(x) y
csci(F)(x) Csc(x) y
cscc(F)(x) Csc(x) y

arcsini(F)(x) ArcSin(x) y
arcsinc(F)(x) ArcSin(x) ?

arccosc(F)(x) ArcCos(x) y
arctani(F)(x) ArcTan(x) ?

C.1 Ada 47

ISO/IEC WD 10967-3.1:2000(E) Working draft

arctanc(F)(x) ArcTan(x) y
arccoti(F)(x) ArcCot(x) ?

arccotc(F)(x) ArcCot(x) y
arcsecc(F)(x) ArcSec(x) y
arccsci(F)(x) ArcCsc(x) y
arccscc(F)(x) ArcCsc(x) y

where x and y are expressions of type CFLT.

Arithmetic value conversions in Ada are always explicit.

convertI!c(I)(x) Compose From Cartesian(x) y
converti(I)!c(I)(x) Compose From Cartesian(x) y
convertF!c(F)(x) Compose From Cartesian(x) ?

convertF!c(F)(x) x - i * 0 or x - j * 0 ?

converti(F)!c(F)(x) Compose From Cartesian(x) ?

converti(F)!c(F)(x) -0 + x ?

complex IO...

Numerals...:

imaginary unitF i or j ?

C.2 C

The programming language C is de�ned by ISO/IEC 9899:1999, Information technology { Pro-
gramming languages { C [13].

An implementation should follow all the requirements of LIA-3 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-3 for that operation. For each of the
marked items a suggested identi�er is provided.

The LIA datatype Boolean is implemented by the C datatype int (1 = true and 0 = false),
or the new Bool datatype.

Every implementation of C has integral datatypes int, long int, unsigned int, and unsigned
long int. INT is used below to designate one of the integer datatypes.

C99 has three complex
oating point datatypes: Complex float, Complex double, and
Complex long double. CFLT is used below to designate one of the complex
oating point
datatypes. These datatypes are, however, not required for all C99 implementations.

The LIA-3 complex integer operations are listed below, along with the syntax used to invoke
them:

itimesi(I)(x) ..x y
itimesc(I)(x) ..x y
reI(x) re(x) y
rei(I)(x) re(x) y
rec(I)(x) re(x) y
imI(x) im(x) y
imi(I)(x) im(x) y
imc(I)(x) im(x) y
plusitimesI(x; y) ..x y y
negi(I)(x) -x y
negc(I)(x) -x y

48 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

conjI(x) conj(x) y
conji(I)(x) conj(x) y
conjc(I)(x) conj(x) y
addi(I)(x; y) x + y y
addc(I)(x; y) x + y y
subi(I)(x; y) x - y y
subc(I)(x; y) x - y y
muli(I)(x; y) x * y y
mulc(I)(x; y) x * y y
:eqi(I)(x; y) x = y y
eqc(I)(x; y) x = y y
:neqi(I)(x; y) x /= y y
neqc(I)(x; y) x /= y y
:absi(I)(x) abs(x) y
:signi(I)(x) sign(x) y

where x and y are expressions of type CINT. The LIA-3 non-transcendental complex
oating
point operations are listed below, along with the syntax used to invoke them:

itimesF (x) i * x or j * x y
reF (x) Re(x) y
rei(F)(x) Re(x) y
rec(F)(x) Re(x) ?

imF (x) Im(x) y
imi(F)(x) Im(x) y
imc(F)(x) Im(x) ?

plusitimesF (x; y) Compose From Cartesian(x,y) ?
plusitimesF (x; y) x + i * y or x + j * y ?
:::F (x; y) Compose From Polar(x,y) ?
:::F (u; x; y) Compose From Polar(x,y,u) ?
negi(F)(x) - x ?

negc(F)(x) - x ?

conjF (x) Conjugate(x) y
conji(F)(x) Conjugate(x) ?

conjc(F)(x) Conjugate(x) ?

:addF;i(F)(x; y) x + y ?

:addF;c(F)(x; y) x + y ?

:addi(F);F (x; y) x + y ?

:addc(F);F (x; y) x + y ?

:addi(F);c(F)(x; y) x + y ?

:addc(F);i(F)(x; y) x + y ?

addi(F)(x; y) x + y ?

addc(F)(x; y) x + y ?

:subF;i(F)(x; y) x - y ?

:subF;c(F)(x; y) x - y ?

:subi(F);F (x; y) x - y ?

:subc(F);F (x; y) x - y ?

:subi(F);c(F)(x; y) x - y ?

:subc(F);i(F)(x; y) x - y ?

subi(F)(x; y) x - y ?

subc(F)(x; y) x - y ?

:mulF;i(F)(x; y) x * y ?

C.2 C 49

ISO/IEC WD 10967-3.1:2000(E) Working draft

:mulF;c(F)(x; y) x * y ?

:muli(F);F (x; y) x * y ?

:mulc(F);F (x; y) x * y ?

:muli(F);c(F)(x; y) x * y ?

:mulc(F);i(F)(x; y) x * y ?

muli(F)(x; y) x * y ?

:divF;i(F)(x; y) x / y ?

:divF;c(F)(x; y) x / y ?

:divi(F);F (x; y) x / y ?

:divc(F);F (x; y) x / y ?

:divi(F);c(F)(x; y) x / y ?

:divc(F);i(F)(x; y) x / y ?

divi(F)(x; y) x / y ?

eqi(F)(x; y) x = y ?

eqc(F)(x; y) x = y ?

neqi(F)(x; y) x /= y ?

neqc(F)(x; y) x /= y ?

...lt, gt, leq, geq on imaginary... ?
absi(F)(x) abs(x) ?

absc(F)(x) abs(x) or Modulus(x) ?

phaseF (x) Argument(x) y
phasei(F)(x) Argument(x) ?

phasec(F)(x) Argument(x) ?

:phaseuc(F)(u; x) Argument(x,u) ?

signi(F)(x) Sign(x) y
signc(F)(x) Sign(x) y

where x, y and z are expressions of the same complex
oating point type.

The LIA-3 parameters for operations approximating complex real valued transcendental func-
tions can be accessed by the following syntax:

max err mulc(F) err cmult y
max err divc(F) err cdivt y
max err expc(F) err cexpt y
max err powerc(F) err cpowert y
max err sinc(F) err csint y
max err tanc(F) err ctant y

where t ...

The LIA-3 elementary complex
oating point operations are listed below, along with the syntax
used to invoke them:

mulc(F)(x; y) x * y ?

divc(F)(x; y) x / y ?

powerc(F)I(b; z) cpowerit(b, z) y
expc(F)(x) cexpt(x) ?

powerc(F)(b; y) cpowert(b, y) y
powc(F)(b; y) cpowt(b, y) ? Not LIA-3!

lnc(F)(x) clogt(x) ?

:logbasec(F)(b; x) clogbaset(b, x) y

50 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

sinhi(F)(x) sinht(x) ?

sinhc(F)(x) sinht(x) ?

coshi(F)(x) cosht(x) ?

coshc(F)(x) cosht(x) ?

tanhi(F)(x) tanht(x) ?

tanhc(F)(x) tanht(x) ?

cothi(F)(x) cotht(x) y
cothc(F)(x) cotht(x) y
sechi(F)(x) secht(x) y
sechc(F)(x) secht(x) y
cschi(F)(x) cscht(x) y
cschc(F)(x) cscht(x) y

radhF (x) radianht(x) y
radhi(F)(x) radianht(x) y
radhc(F)(x) radianht(x) y

arcsinhi(F)(x) asinht(x) ?

arcsinhc(F)(x) asinht(x) ?

arccoshc(F)(x) acosht(x) ?

arctanhi(F)(x) atanht(x) ?

arctanhc(F)(x) atanht(x) ?

arccothi(F)(x) acotht(x) y
arccothc(F)(x) acotht(x) y
arcsechc(F)(x) asecht(x) y
arccschi(F)(x) acscht(x) y
arccschc(F)(x) acscht(x) y

radi(F)(x) radiant(x) y
radc(F)(x) radiant(x) y

sini(F)(x) sint(x) ?

sinc(F)(x) sint(x) ?

cosi(F)(x) cost(x) ?

cosc(F)(x) cost(x) ?

tani(F)(x) tant(x) ?

tanc(F)(x) tant(x) ?

coti(F)(x) cott(x) y
cotc(F)(x) cott(x) y
seci(F)(x) sect(x) y
secc(F)(x) sect(x) y
csci(F)(x) csct(x) y
cscc(F)(x) csct(x) y

arcsini(F)(x) asint(x) ?

arcsinc(F)(x) asint(x) ?

arccosc(F)(x) acost(x) ?

arctani(F)(x) atant(x) ?

arctanc(F)(x) atant(x) ?

arccoti(F)(x) acott(x) y
arccotc(F)(x) acott(x) y

C.2 C 51

ISO/IEC WD 10967-3.1:2000(E) Working draft

arcsecc(F)(x) asect(x) y
arccsci(F)(x) acsct(x) y
arccscc(F)(x) acsct(x) y

where b, x, and y are expressions of the same complex
oating point type. t is a string, part of
the operation name, and is \f" for Complex float, the empty string for Complex double, and
\l" for Complex long float.

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as `casts', except when converting to/from strings. The rules for
when implicit conversions are applied is not repeated here, but work as if a cast had been applied.

convertI!c(I)(x) ..(x) y
converti(I)!c(I)(x) ..(x) y
convertF!c(F)(x) x - I * 0 or x - IMAGINARY I * 0 ?

converti(F)!c(F)(x) -0 + x ?

complex IO...

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to I 0.
A ? above indicates that the parameter is optional. e is greater than 0.

Numerals...:

imaginary unitF I or IMAGINARY I ?

C99 has two ways of handling arithmetic errors. One, for backwards compatibility, is by
assigning to errno. The other is by recording of indicators, the method preferred by LIA-3, which
can be used for
oating point errors. For C99, the absolute precision under
ow noti�cation
is ignored.

C.3 C++

The programming language C++ is de�ned by ISO/IEC 14882:1998, Programming languages {
C++ [14].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

This example binding recommends that all identi�ers suggested here be de�ned in the names-
pace std::math.

The LIA-1 datatype Boolean is implemented by the C++ datatype bool.

Every implementation of C++ has integral datatypes int, long int, unsigned int, and
unsigned long int. INT is used below to designate one of the integer datatypes.

C++ has three
oating point datatypes: float, double, and long double. FLT is used below
to designate one of the
oating point datatypes.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

52 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

where x and y are expressions of the same integer type and where xs is an expression of type
valarray of an integer type.

The LIA-2 non-transcendental
oating point operations are listed below, along with the syntax
used to invoke them:

where x, y and z are expressions of the same
oating point type, and where xs is an expression
of type valarray of a
oating point type.

The parameters for operations approximating real valued transcendental functions can be ac-
cessed by the following syntax:

max err mulc(F) err mul<CFLT>() y
max err divc(F) err div<CFLT>() y

max err expc(F) err exp<CFLT>() y
max err powerc(F) err power<CFLT>() y

max err sinc(F) err sin<CFLT>() y
max err tanc(F) err tan<CFLT>() y

where u is an expression of a
oating point type. Several of the parameter functions are constant
for each type (and library).

The LIA-2 elementary
oating point operations are listed below, along with the syntax (type
generic macros) used to invoke them:

expc(F)(x) exp(x) ?

powerc(F)(b; y) power(b, y) y
powc(F)(b; y) pow(b, y) ? Not LIA-2! (See C.)

lnc(F)(x) log(x) ?

logbasec(F)(b; x) logbase(b, x) y

radhc(F)(x) radh(x) y

sinhc(F)(x) sinh(x) ?

coshc(F)(x) cosh(x) ?

tanhc(F)(x) tanh(x) ?

cothc(F)(x) coth(x) y
sechc(F)(x) sech(x) y
cschc(F)(x) csch(x) y

arcsinhc(F)(x) asinh(x) ?

arccoshc(F)(x) acosh(x) ?

arctanhc(F)(x) atanh(x) ?

arccothc(F)(x) acoth(x) y
arcsechc(F)(x) asech(x) y
arccschc(F)(x) acsch(x) y

radc(F)(x) rad(x) y

C.3 C++ 53

ISO/IEC WD 10967-3.1:2000(E) Working draft

sinc(F)(x) sin(x) ?

cosc(F)(x) cos(x) ?

tanc(F)(x) tan(x) ?

cotc(F)(x) cot(x) y
secc(F)(x) sec(x) y
cscc(F)(x) csc(x) y

arcsinc(F)(x) asin(x) ?

arccosc(F)(x) acos(x) ?

arctanc(F)(x) atan(x) ?

arccotc(F)(x) acot(x) y
arcctgc(F)(x) actg(x) y
arcsecc(F)(x) asec(x) y
arccscc(F)(x) acsc(x) y

where b, x, y, u, and v are expressions of type CFLT.

Arithmetic value conversions in C++ are can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as `casts', except when converting to/from strings.

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to I 0.
A ? above indicates that the parameter is optional. e is greater than 0.

C++ provides non-negative numerals for all its integer and
oating point types in base 10.
Numerals for di�erent integer types are distinguished by suÆxes. Numerals for di�erent
oating
point types are distinguished by suÆx: f for float, no suÆx for double, l for long double.
Numerals for
oating point types must have a `.' in them. The details are not repeated in
this example binding, see ISO/IEC 14882, clause 2.9.1 Integer literals, and clause 2.9.4 Floating
literals.

C.4 Fortran

The programming language Fortran is de�ned by ISO/IEC 1539-1:1997, Information technology
{ Programming languages { Fortran { Part 1: Base language [18].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

The Fortran datatype LOGICAL corresponds to the LIA datatype Boolean.

Every implementation of Fortran has one integer datatype, denoted as INTEGER, and two
oat-
ing point data type denoted as REAL (single precision) and DOUBLE PRECISION.

An implementation is permitted to o�er additional INTEGER types with a di�erent range and
additional REAL types with di�erent precision or range, parameterised with the KIND parameter.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

54 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

addc(I)(x; y) x + y y
subc(I)(x; y) x - y y
mulc(I)(x; y) x * y y

where x and y are expressions of type CINTEGER and where xs is an expression of type array of
CINTEGER.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

addc(F)(x; y) x + y ?

subc(F)(x; y) x - y ?

mulc(F)(x; y) x * y ?

where x, y and z are expressions of type FLT, and where xs is an expression of type array of FLT.

The LIA-3 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err mulF ERR MUL(x) y
max err divF ERR DIV(x) y

max err expF ERR EXP(x) y
max err powerF ERR POWER(x) y

max err sinF ERR SIN(x) y
max err tanF ERR TAN(x) y

where b, x and u are expressions of type CFLT. Several of the parameter functions are constant
for each type (and library), the argument is then used only to di�erentiate among the
oating
point types.

The LIA-3 elementary
oating point operations are listed below, along with the syntax used
to invoke them:

divc(F)(x; y) x / y ?

sqrtc(F)(x) SQRT(x) ?

expc(F)(x) EXP(x) ?

powerc(F)(b; y) b ** y ?

lnc(F)(x) LOG(x) ?

logbasec(F)(b; x) LOGBASE(b, x) y

sinhc(F)(x) SINH(x) ?

coshc(F)(x) COSH(x) ?

tanhc(F)(x) TANH(x) ?

cothc(F)(x) COTH(x) y
sechc(F)(x) SECH(x) y
cschc(F)(x) CSCH(x) y

radhc(F)(x) RADH(x) y

C.4 Fortran 55

ISO/IEC WD 10967-3.1:2000(E) Working draft

arcsinhc(F)(x) ASINH(x) y
arccoshc(F)(x) ACOSH(x) y
arctanhc(F)(x) ATANH(x) y
arccothc(F)(x) ACOTH(x) y
arcsechc(F)(x) ASECH(x) y
arccschc(F)(x) ACSCH(x) y

radc(F)(x) RAD(x) y

sinc(F)(x) SIN(x) ?

cosc(F)(x) COS(x) ?

tanc(F)(x) TAN(x) ?

cotc(F)(x) COT(x) y
secc(F)(x) SEC(x) y
cscc(F)(x) CSC(x) y

arcsinc(F)(x) ASIN(x) ?

arccosc(F)(x) ACOS(x) ?

arctanc(F)(x) ATAN(x) ?

arccotc(F)(x) ACOT(x) y
arcctgc(F)(x) ACTG(x) y
arcsecc(F)(x) ASEC(x) y
arccscc(F)(x) ACSC(x) y

where b, x, y, u, and v are expressions of type CFLT.

Arithmetic value conversions in Fortran are always explicit, and the conversion function is
named like the target type, except when converting to/from strings.

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to
I 0.

C.5 Haskell

The programming language Haskell is de�ned by Report on the programming language Haskell 98
[56], together with Standard libraries for the Haskell 98 programming panguage [57].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-3 for that operation. For each of the
marked items a suggested identi�er is provided.

The Haskell datatype Bool corresponds to the LIA datatype Boolean.

Every implementation of Haskell has at least two integer datatypes Integer, which is unlimited,
and Int, and at least two
oating point datatypes, Float, and Double. The notation INT is used
to stand for the name of one of the integer datatypes, and FLT is used to stand for the name of
one of the
oating point datatypes in what follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

56 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

addc(I)(x; y) x + y or (+) x y y
subc(I)(x; y) x - y or (-) x y y
mulc(I)(x; y) x * y or (*) x y y

where x and y are expressions of type complex INT [not in Haskell98].

The LIA-3 non-transcendental
oating point operations are listed below, along with the syntax
used to invoke them:

addc(F)(x; y) x + y or (+) x y ?

subc(F)(x; y) x - y or (-) x y ?

where x, y and z are expressions of type complex FLT.

The LIA-3 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err mulF err mul x y
max err divF err div x y

max err expF err exp x y
max err powerF err power x y

max err sinF err sin x y
max err tanF err tan x y

where x is an expression of type complex FLT. Several of the parameter functions are constant
for each type (and library), the argument is then used only to di�erentiate among the
oating
point types.

The LIA-3 elementary
oating point operations are listed below, along with the syntax used
to invoke them:

mulc(F)(x; y) x * y or (*) x y ?

sqrtc(F)(x) sqrt x ?

expc(F)(x) exp x ?

powerc(F)(b; y) b ** y or (**) b y ?

lnc(F)(x) log x ?

logbasec(F)(b; x) logBase b x or b `logBase` x ?

radhc(F)(x) hypradians x y

sinhc(F)(x) sinh x ?

coshc(F)(x) cosh x ?

tanhc(F)(x) tanh x ?

cothc(F)(x) coth x y
sechc(F)(x) sech x y
cschc(F)(x) csch x y

arcsinhc(F)(x) asinh x ?

arccoshc(F)(x) acosh x ?

C.5 Haskell 57

ISO/IEC WD 10967-3.1:2000(E) Working draft

arctanhc(F)(x) atanh x ?

arccothc(F)(x) acoth x y
arcsechc(F)(x) asech x y
arccschc(F)(x) acsch x y

radc(F)(x) radians x y

sinc(F)(x) sin x ?

cosc(F)(x) cos x ?

tanc(F)(x) tan x ?

cotc(F)(x) cot x y
secc(F)(x) sec x y
cscc(F)(x) csc x y

arcsinc(F)(x) asin x ?

arccosc(F)(x) acos x ?

arctanc(F)(x) atan x ?

arccotc(F)(x) acot x y
arcctgc(F)(x) actg x y
arcsecc(F)(x) asec x y
arccscc(F)(x) acsc x y

where b, x, y, u, and v are expressions of type complex FLT.

Arithmetic value conversions in Haskell are always explicit. They are done with the overloaded
fromIntegral and fromFractional operations.

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type.

C.6 Java

The programming language Java is de�ned by The Java Language Speci�cation [55].

An implementation should follow all the requirements of LIA-3 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-3 for that operation. For each of the
marked items a suggested identi�er is provided. The LIA-3 operations that are provided in Java
2 (marked \?" below) are in the �nal class java.lang.Math [not in Java 2...].

The Java datatype boolean corresponds to the LIA datatype Boolean.

Every implementation of Java has the integral datatypes int, and long.

Java has two
oating point datatypes, float and double, which must conform to IEC 60559.

The LIA-3 integer operations are listed below, along with the syntax used to invoke them:

addc(I)(x; y) add(x, y) ?

subc(I)(x; y) sub(x, y) ?

mulc(I)(x; y) mul(x, y) ?

58 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

where x and y are expressions of type CINT.

The LIA-3 non-transcendental
oating point operations are listed below, along with the syntax
used to invoke them:

addc(F)(x; y) add(x, y) ?

subc(F)(x; y) sub(x, y) ?

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err mulc(F) err mul(x) y
max err divc(F) err div(x) y

max err expc(F) err exp(x) y
max err powerc(F)(b; x) err power(b, x) y

max err sinc(F) err sin(x) y
max err tanc(F) err tan(x) y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

The LIA-2 elementary
oating point operations are listed below, along with the syntax used
to invoke them. These are de�ned only for double not for float.

mulc(F)(x; y) mul(x, y) ?

divc(F)(x; y) div(x, y) ?

expc(F)(x) exp(x) ?

powerc(F)(b; y) power(b, y) y
powc(F)(b; y) pow(b, y) ? Not LIA-2!

lnc(F)(x) log(x) ?

logbasec(F)(b; x) log(b, x) y

radhc(F)(x) hypradian(x) y

sinhc(F)(x) sinh(x) y
coshc(F)(x) cosh(x) y
tanhc(F)(x) tanh(x) y
cothc(F)(x) coth(x) y
sechc(F)(x) sech(x) y
cschc(F)(x) csch(x) y

arcsinhc(F)(x) asinh(x) y
arccoshc(F)(x) acosh(x) y
arctanhc(F)(x) atanh(x) y
arccothc(F)(x) acoth(x) y
arcsechc(F)(x) asech(x) y

C.6 Java 59

ISO/IEC WD 10967-3.1:2000(E) Working draft

arccschc(F)(x) acsch(x) y

radc(F)(x) radian(x) y

sinc(F)(x) sin(x) ?

cosc(F)(x) cos(x) ?

tanc(F)(x) tan(x) ?

cotc(F)(x) cot(x) y
secc(F)(x) sec(x) y
cscc(F)(x) csc(x) y

arcsinc(F)(x) asin(x) ?

arccosc(F)(x) acos(x) ?

arctanc(F)(x) atan(x) ?

arccotc(F)(x) acot(x) y
arcctgc(F)(x) actg(x) y
arcsecc(F)(x) asec(x) y
arccscc(F)(x) acsc(x) y

where b, x, y, u, and v are expressions of type CFLT.

Arithmetic value conversions in Java can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as `casts', except when converting to/from strings.

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to I 0.
A ? above indicates that the parameter is optional. e is greater than 0.

C.7 Common Lisp

The programming language Common Lisp is de�ned by ANSI X3.226-1994, Information Technol-
ogy { Programming Language { Common Lisp [38].

An implementation should follow all the requirements of LIA-3 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

Common Lisp does not have a single datatype that corresponds to the LIA-1 datatypeBoolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp has one unbounded integer datatype. Any mathemat-
ical integer is assumed to have a representation as a Common Lisp data object, subject only to
total memory limitations.

Common Lisp has four
oating point types: short-float, single-float, double-float, and
long-float. Not all of these
oating point types must be distinct.

The additional integer operations are listed below, along with the syntax used to invoke them:

60 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

addc(I)(x; y) (+ x y) ?

subc(I)(x; y) (- x y) ?

mulc(I)(x; y) (* x y) ?

where x and y are expressions of type CINT.

The LIA-3 non-transcendental
oating point operations are listed below, along with the syntax
used to invoke them:

addc(F)(x; y) (+ x y) ?

subc(F)(x; y) (- x y) ?

where x, y and z are data objects of the same
oating point type, and where xs is a data objects
that is a list of data objects of (the same, in this binding)
oating point type. Note that Common
Lisp allows mixed number types in many of its operations. This example binding does not explain
that in detail.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err mulF (err-mul x) y
max err divF (err-div x) y

max err expF (err-exp x) y
max err powerF (err-power x) y

max err sinF (err-sin x) y
max err tanF (err-tan x) y

where b, x and u are expressions of type CFLT. Several of the parameter functions are constant
for each type (and library), the argument is then used only to di�erentiate among the
oating
point types.

The LIA-3 elementary
oating point operations are listed below, along with the syntax used
to invoke them:

mulc(F)(x; y) (* x y) ?

divc(F)(x; y) (/ x y) ?

sqrtc(F)(x) (sqrt x) ?

expc(F)(x) (exp x) ?

powerc(F)(b; y) (expt b y) (deviation: (expt 0.0 0.0) is 1) ?

lnc(F)(x) (log x) ?

logbasec(F)(b; x) (log x b) (note parameter order) ?

radhc(F)(x) (hypradians x) y

sinhc(F)(x) (sinh x) ?

coshc(F)(x) (cosh x) ?

tanhc(F)(x) (tanh x) ?

cothF (x) (coth x) y

C.7 Common Lisp 61

ISO/IEC WD 10967-3.1:2000(E) Working draft

sechF (x) (sech x) y
cschc(F)(x) (csch x) y

arcsinhc(F)(x) (asinh x) ?

arccoshc(F)(x) (acosh x) ?

arctanhc(F)(x) (atanh x) ?

arccothc(F)(x) (acoth x) y
arcsechc(F)(x) (asech x) y
arccschc(F)(x) (acsch x) y

radc(F)(x) (radians x) y

sinc(F)(x) (sin x) ?

cosc(F)(x) (cos x) ?

tanc(F)(x) (tan x) ?

cotc(F)(x) (cot x) y
secc(F)(x) (sec x) y
cscc(F)(x) (csc x) y

arcsinc(F)(x) (asin x) ?

arccosc(F)(x) (acos x) ?

arctanc(F)(x) (atan x) ?

arccotc(F)(x) (acot x) y
arcctgc(F)(x) (actg x) y
arcsecc(F)(x) (asec x) y
arccscc(F)(x) (acsc x) y

where b, x, y, u, and v are expressions of type CFLT.

Arithmetic value conversions in Common Lisp are can be explicit or implicit. The rules for
when implicit conversions are done is implementation de�ned.

where x is an expression of type INT, y is an expression of type FLT, and z is an expression
of type FXD, where FXD is a �xed point type. Convertion from string to numeric value is in
Common Lisp done via a general read procedure, which reads Common Lisp `S-expressions'.

C.8 ISLisp

The programming language ISLisp is de�ned by ISO/IEC 13816:1997, Information technology
{ Programming languages, their environments and system software interfaces { Programming
language ISLISP [20].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identi�er is provided.

ISLisp does not have a single datatype that corresponds to the LIA datatype Boolean. Rather,
NIL corresponds to false and T corresponds to true.

62 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

Every implementation of ISLisp has one unbounded integer datatype. Any mathematical in-
teger is assumed to have a representation as a ISLisp data object, subject only to total memory
limitations.

ISLisp has one
oating point type required to conform to IEC 60559.

The additional integer operations are listed below, along with the syntax used to invoke them:

minI(x; y) (min x y) ?
maxI(x; y) (max x y) ?
min seqI(xs) (min . xs) or (min x1 x2 ... xn) ?
max seqI(xs) (max . xs) or (max x1 x2 ... xn) ?

dimI(x; y) (dim x y) y
sqrtI(x) (isqrt x) ?
powerI(x; y) (expt x y) (deviation: (expt 0 0) is 1) ?
shift2I(x; y) (shift2 x y) y

shift10I(x; y) (shift10 x y) y

dividesI(x; y) (dividesp x y) y
evenI(x) (evenp x) y
oddI(x) (oddp x) y
divfI(x; y) (div x y) ?
modaI(x; y) (mod x y) ?
groupI(x; y) (group x y) y
padI(x; y) (pad x y) y
quotI(x; y) (quot x y) y
remrI(x; y) (remainder x y) y
gcdI(x; y) (gcd x y) (deviation: (gcd 0 0) is 0) ?
lcmI(x; y) (lcm x y) ?
gcd seqI(xs) (gcds xs) y
lcm seqI(xs) (lcms xs) y

add wrapI(x; y) (add wrap x y) y
add ovI(x; y) (add over x y) y
sub wrapI(x; y) (sub wrap x y) y
sub ovI(x; y) (sub over x y) y
mul wrapI(x; y) (mul wrap x y) y
mul ovI(x; y) (mul over x y) y

where x and y are expressions of type INT and where xs is an expression of type list of INT.

The LIA-2 non-transcendental
oating point operations are listed below, along with the syntax
used to invoke them:

minF (x; y) (min x y) ?
maxF (x; y) (max x y) ?
mminF (x; y) (mmin x y) y
mmaxF (x; y) (mmax x y) y
min seqF (xs) (min . xs) or (min x1 x2 ... xn) ?
max seqF (xs) (max . xs) or (max x1 x2 ... xn) ?
mmin seqF (xs) (mmin . xs) or (mmin x1 x2 ... xn) y
mmax seqF (xs) (mmax . xs) or (mmax x1 x2 ... xn) y

C.8 ISLisp 63

ISO/IEC WD 10967-3.1:2000(E) Working draft

oorF (x) (float (floor x)) ?
roundingF (x) (float (round x)) ?
ceilingF (x) (float (ceiling x)) ?

dimF (x; y) (dim x y) y
dprodF!F 0(x; y) (prod x y) y
remrF (x; y) (remainder x y) y
sqrtF (x) (sqrt x) ?
rsqrtF (x) (rsqrt x) y

add loF (x; y) (add low x y) y
sub loF (x; y) (sub low x y) y
mul loF (x; y) (mul low x y) y
div restF (x; y) (div rest x y) y
sqrt restF (x) (sqrt rest x) y

where x, y and z are data objects of the same
oating point type, and where xs is an data objects
that are lists of data objects of the same
oating point type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err hypotF (err-hypotenuse x) y

max err expF (err-exp x) y
max err powerF (err-power x) y

max err sinhF (err-sinh x) y
max err tanhF (err-tanh x) y

big radian angleF (big-radian-angle x) y
max err sinF (err-sin x) y
max err tanF (err-tan x) y

min angular unitF (minimum-angular-unit x) y
big angleF (big-angle x) y
max err sinuF (u) (err-sin-cycle u) y
max err tanuF (u) (err-tan-cycle u) y

max err convertF err-convert-to-string y
max err convertD err-convert-to-string y

where b, x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

The LIA-2 elementary
oating point operations are listed below, along with the syntax used
to invoke them:

hypotF (x; y) (hypotenuse x y) y

powerFI(b; z) (expt b z) ?

64 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

expF (x) (exp x) ?
expm1F (x) (expm1 x) y
exp2F (x) (exp2 x) y
exp10F (x) (exp10 x) y
powerF (b; y) (expt b y) ?
power1pm1 F (b; y) (expm1 b y) y

lnF (x) (log x) ?
ln1pF (x) (log1p x) y
log2F (x) (log2 x) y
log10F (x) (log10 x) y
logbaseF (b; x) (logbase b x) y
logbase1p1pF (b; x) (logbase1p b x) y

sinhF (x) (sinh x) ?
coshF (x) (cosh x) ?
tanhF (x) (tanh x) ?
cothF (x) (coth x) y
sechF (x) (sech x) y
cschF (x) (csch x) y

arcsinhF (x) (asinh x) y
arccoshF (x) (acosh x) y
arctanhF (x) (atanh x) ?
arccothF (x) (acoth x) y
arcsechF (x) (asech x) y
arccschF (x) (acsch x) y

axis radF (x) (axis rad x) y
radF (x) (radians x) y

sinF (x) (sin x) ?
cosF (x) (cos x) ?
tanF (x) (tan x) ?
cotF (x) (cot x) y
secF (x) (sec x) y
cscF (x) (csc x) y

arcsinF (x) (asin x) ?
arccosF (x) (acos x) ?
arctanF (x) (atan x) ?
arccotF (x) (acot x) y
arcctgF (x) (actg x) y
arcsecF (x) (asec x) y
arccscF (x) (acsc x) y
arcF (x; y) (atan2 y x) ?

axis cycleF (u; x) (axis cycle u x) y
cycleF (u; x) (cycle u x) y

sinuF (u; x) (sinU u x) y

C.8 ISLisp 65

ISO/IEC WD 10967-3.1:2000(E) Working draft

cosuF (u; x) (cosU u x) y
tanuF (u; x) (tanU u x) y
cotuF (u; x) (cotU u x) y
secuF (u; x) (secU u x) y
cscuF (u; x) (cscU u x) y

arcsinuF (u; x) (asinU u x y
arccosuF (u; x) (acosU u x y
arctanuF (u; x) (atanU u x y
arccotuF (u; x) (acotU u x y
arcctguF (u; x) (actgU u x) y
arcsecuF (u; x) (asecU u x) y
arccscuF (u; x) (acscU u x) y
arcuF (u; x; y) (atan2U u y x) y

rad to cycleF (x; u) (rad to cycle x u) y
cycle to radF (u; x) (cycle to rad u x) y
cycle to cycleF (u; x; v) (cycle to cycle u x v) y

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT.

Arithmetic value conversions in ISLisp are can be explicit or implicit. The rules for when
implicit conversions are done is implementation de�ned.

convertI!I00(x) (format g "~B" x) ?(binary)
convertI!I00(x) (format g "~O" x) ?(octal)
convertI!I00(x) (format g "~D" x) ?(decimal)
convertI!I00(x) (format g "~X" x) ?(hexadecimal)
convertI!I00(x) (format g "~rR" x) ?(radix r)
convertI!I00(x) (format-integer g x r) ?(radix r)

roundingF!I(y) (round y) ?

oorF!I(y) (floor y) ?
ceilingF!I(y) (ceiling y) ?

convertI!F (x) (float x kind) ?

convertF!F 0(y) (float y kind) ?
convertF!F 00(y) (format g "~G" y) ?
convertF!F 00(y) (format-float g y) ?

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. Conversion from string to numeric value is in ISLisp
done via a general read procedure, which reads ISLisp `S-expressions'.

ISLisp provides non-negative numerals for its integer and
oating point types in base is 10.

ISLisp does not specify numerals for in�nities and NaNs. Suggestion:

+1+1+1 infinity y
qNaN nan y
sNaN signan y

66 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

as well as string formats for reading and writing these values as character strings.

ISLisp has a notion of `error' that implies a catchable, possibly returnable, change of control

ow. ISLisp uses its exception mechanism as its default means of noti�cation. ISLisp ignores
under
ow noti�cations. On under
ow the continuation value (speci�ed in LIA-2) is used
directly without recording the under
ow itself. ISLisp uses the error domain-error for invalid
and some in�nitary noti�cations, the error arithmetic-error for over
ow noti�cations, and
the error division-by-zero for other in�nitary noti�cations.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric noti�cations. Recording of indicators is the LIA-2 preferred
means of handling numeric noti�cations.

C.9 Modula-2

The programming language Modula-2 is de�ned by ISO/IEC 10514-1:1996, Information technology
{ Programming languages - Part 1: Modula-2, Base Language [21]. An implementation should
follow all the requirements of LIA-3 unless otherwise speci�ed by this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-3 for that operation. For each of the
marked items a suggested identi�er is provided.

The Modula-2 datatype Boolean corresponds to the LIA datatype Boolean.

The additional integer operations are listed below, along with the syntax used to invoke them:

addc(I)(x; y) add(x, y) y

where x and y are expressions of type INT and where xs is an expression of type array [] of

INT.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

addc(F)(x; y) add(x, y) y
subc(F)(x; y) sub(x, y) y

where x, y and z are expressions of type FLT, and where xs is an expression of type array []

of FLT.

The LIA-3 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

max err mulc(F) err mul(x) y
max err divc(F) err div(x) y

max err expc(F) err exp(x) y
max err powerc(F) err power(x) y

max err sinc(F) err sin(x) y
max err tanc(F) err tan(x) y

C.9 Modula-2 67

ISO/IEC WD 10967-3.1:2000(E) Working draft

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

The LIA-2 elementary
oating point operations are listed below, along with the syntax used
to invoke them:

mulc(F)(x; y) mul(x, y) y
divc(F)(x; y) div(x, y) y
sqrtc(F)(x) sqrt(x) ?

expc(F)(x) exp(x) ?

powerc(F)(b; y) power(b, y) ?

lnc(F)(x) ln(x) ?

logbasec(F)(b; x) log(x, b) y

radhc(F)(x) hypradian(x) y

sinhc(F)(x) sinh(x) y
coshc(F)(x) cosh(x) y
tanhc(F)(x) tanh(x) y
cothc(F)(x) coth(x) y
sechc(F)(x) sech(x) y
cschc(F)(x) csch(x) y

arcsinhc(F)(x) arcsinh(x) y
arccoshc(F)(x) arccosh(x) y
arctanhc(F)(x) arctanh(x) y
arccothc(F)(x) arccoth(x) y
arcsechc(F)(x) arcsech(x) y
arccschc(F)(x) arccsch(x) y

radc(F)(x) radian(x) y

sinc(F)(x) sin(x) ?

cosc(F)(x) cos(x) ?

tanc(F)(x) tan(x) ?

cotc(F)(x) cot(x) y
secc(F)(x) sec(x) y
cscc(F)(x) csc(x) y

arcsinc(F)(x) arcsin(x) ?

arccosc(F)(x) arccos(x) ?

arctanc(F)(x) arctan(x) ?

arccotc(F)(x) arccot(x) y
arcctgc(F)(x) arcctg(x) y
arcsecc(F)(x) arcsec(x) y
arccscc(F)(x) arccsc(x) y

where b, x, y, u, and v are expressions of type CFLT.

Arithmetic value conversions in Modula-2 are can be explicit or implicit. The rules for when
implicit conversions are applied is not repeated here. The explicit arithmetic value conversions

68 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

are usually expressed as `casts', except when converting to/from strings.

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to I 0.
A ? above indicates that the parameter is optional. e is greater than 0.

C.10 PL/I

The programming language PL/I is de�ned by ANSI X3.53-l976 (R1998), Programming languages
{ PL/I [39], and endorsed by ISO 6160:1979, Programming languages { PL/I [25]. The program-
ming language General Purpose PL/I is de�ned by ISO/IEC 6522:1992, Information technology {
Programming languages { PL/I general-purpose subset [26], also: ANSI X3.74-1987 (R1998).

An implementation should follow all the requirements of LIA-3 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-3 for that operation. For each of the
marked items a suggested identi�er is provided.

The LIA datatype Boolean is implemented in the PL/I datatype BIT(1) (1 = true and 0 =
false).

An implementation of PL/I provides at least one integer data type, and at least one
oating
point data type. The attribute FIXED(n,0) selects a signed integer datatype with at least n
(decimal or binary) digits of storage. The attribute FLOAT(k) selects a
oating point datatype
with at least n (decimal or binary) digits of precision.

The LIA-3 integer operations are listed below, along with the syntax used to invoke them:

addc(I)(x; y) x + y y
subc(I)(x; y) x - y y
mulc(I)(x; y) x * y y

where x and y are expressions of type CINT.

The LIA-3 non-transcendental
oating point operations are listed below, along with the syntax
used to invoke them:

addc(F)(x; y) x + y ?

subc(F)(x; y) x - y ?

where x, y and z are expressions of type FLT, and where xs is an expression of type array of

FLT.

The parameters for operations approximating real valued transcendental functions can be ac-
cessed by the following syntax:

max err mulc(F) err mul(x) y
max err divc(F) err div(x) y

max err expc(F) err exp(x) y
max err powerc(F) err power(x) y

C.10 PL/I 69

ISO/IEC WD 10967-3.1:2000(E) Working draft

max err sinc(F) err sin(x) y
max err tanc(F) err tan(x) y

where x and u are expressions of type CFLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

The LIA-3 elementary
oating point operations are listed below, along with the syntax used
to invoke them:

mulc(F)(x; y) x * y ?

divc(F)(x; y) x / y ?

sqrtc(F)(x) sqrt(x) ?

expc(F)(x) exp(x) ?

powerc(F)(b; y) power(b, y) y

lnc(F)(x) log(x) ?

logbasec(F)(b; x) log(b, x) y

radhc(F)(x) radh(x) y

sinhc(F)(x) sinh(x) ?

coshc(F)(x) cosh(x) ?

tanhc(F)(x) tanh(x) ?

cothc(F)(x) coth(x) y
sechc(F)(x) sech(x) y
cschc(F)(x) csch(x) y

arcsinhc(F)(x) arcsinh(x) ?

arccoshc(F)(x) arccosh(x) ?

arctanhc(F)(x) arctanh(x) ?

arccothc(F)(x) arccoth(x) y
arcsechc(F)(x) arcsech(x) y
arccschc(F)(x) arccsch(x) y

radc(F)(x) rad(x) y

sinc(F)(x) sin(x) ?

cosc(F)(x) cos(x) ?

tanc(F)(x) tan(x) ?

cotc(F)(x) cot(x) ?

secc(F)(x) sec(x) y
cscc(F)(x) csc(x) y

arcsinc(F)(x) arcsin(x) ?

arccosc(F)(x) arccos(x) ?

arctanc(F)(x) arctan(x) ?

arccotc(F)(x) arccot(x) y
arcctgc(F)(x) arcctg(x) y
arcsecc(F)(x) arcsec(x) y
arccscc(F)(x) arccsc(x) y

where b, x, y, u, and v are expressions of type CFLT.

70 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

Arithmetic value conversions in PL/I are can be explicit or implicit. The rules for when implicit
conversions are applied is not repeated here. The explicit arithmetic value conversions are usually
expressed as `casts', except when converting to/from strings.

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to I 0.
A ? above indicates that the parameter is optional. a is greater than 0.

C.11 SML

The programming language SML is de�ned by The De�nition of Standard ML (Revised) [58].

An implementation should follow all the requirements of LIA-2 unless otherwise speci�ed by
this language binding.

The operations or parameters marked \y" are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-3 for that operation. For each of the
marked items a suggested identi�er is provided.

The SML datatype Boolean corresponds to the LIA datatype Boolean.

Every implementation of SML has at least one integer datatype, int, and at least one
oating
point datatype, real. The notation INT is used to stand for the name of one of the integer
datatypes, and FLT is used to stand for the name of one of the
oating point datatypes in what
follows.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

addc(I)(x; y) x + y or op + (x,y) ?

subc(I)(x; y) x - y or op - (x,y) ?

mulc(I)(x; y) x * y or op * (x,y) ?

where x and y are expressions of type CINT.

The additional non-transcendental
oating point operations are listed below, along with the
syntax used to invoke them:

addc(F)(x; y) x + y or op + (x,y) ?

subc(F)(x; y) x - y or op - (x,y) ?

where x, y and z are expressions of type CFLT.

The binding for the
oor, round, and ceiling operations here take advantage of the unlimited
Integer type in SML, and that Integer is the default integer type.

The parameters for operations approximating real valued transcendental functions can be ac-
cessed by the following syntax:

max err mulF err mul x y
max err divF err div x y

max err expF err exp x y
max err powerF err power x y

max err sinF err sin x y
max err tanF err tan x y

C.11 SML 71

ISO/IEC WD 10967-3.1:2000(E) Working draft

where x and u are expressions of type FLT. Several of the parameter functions are constant for
each type (and library), the argument is then used only to di�erentiate among the
oating point
types.

The LIA-3 elementary
oating point operations are listed below, along with the syntax used
to invoke them:

mulc(F)(x; y) x * y or op * (x,y) ?

divc(F)(x; y) x / y or op / (x,y) ?

sqrtc(F)(x) sqrt x ?

expc(F)(x) exp x ?

powerc(F)(b; y) b ** y y
powc(F)(b; y) b pow y or op pow (x,y) ? Not LIA-2! (See C.)

lnc(F)(x) ln x ?

logbasec(F)(b; x) log base (b,x) y

radhc(F)(x) hypradians x y

sinhc(F)(x) sinh x ?

coshc(F)(x) cosh x ?

tanhc(F)(x) tanh x ?

cothc(F)(x) coth x y
sechc(F)(x) sech x y
cschc(F)(x) csch x y

arcsinhc(F)(x) arcsinh x y
arccoshc(F)(x) arccosh x y
arctanhc(F)(x) arctanh x y
arccothc(F)(x) arccoth x y
arcsechc(F)(x) arcsech x y
arccschc(F)(x) arccsch x y

radc(F)(x) radians x y

sinc(F)(x) sin x ?

cosc(F)(x) cos x ?

tanc(F)(x) tan x ?

cotc(F)(x) cot x y
secc(F)(x) sec x y
cscc(F)(x) csc x y

arcsinc(F)(x) arcsin x ?

arccosc(F)(x) arccos x ?

arctanc(F)(x) arctan x ?

arccotc(F)(x) arccot x y
arcctgc(F)(x) arcctg x y
arcsecc(F)(x) arcsec x y
arccscc(F)(x) arccsc x y

72 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

where b, x, y, u, and v are expressions of type FLT, and z is an expressions of type INT

Type conversions in SML are always explicit.

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of
type FXD, where FXD is a �xed point type. INT2 is the integer datatype that corresponds to I 0.

C.11 SML 73

ISO/IEC WD 10967-3.1:2000(E) Working draft

74 Example bindings for speci�c languages

Working draft ISO/IEC WD 10967-3.1:2000(E)

Annex D

(informative)

Bibliography

This annex gives references to publications relevant to LIA-3.

International standards documents

[1] ISO/IEC JTC1 Directives, Part 3: Drafting and presentation of International Standards,
1989.

[2] ISO 6093:1985, Information processing { Representation of numerical values in character
strings for information interchange.

[3] ISO/IEC TR 10176:1998, Information technology { Guidelines for the preparation of pro-
gramming language standards.

[4] ISO/IEC TR 10182:1993, Information technology { Programming languages, their environ-
ments and system software interfaces { Guidelines for language bindings.

[5] ISO/IEC 13886:1996, Information technology { Language-Independent Procedure Calling,
(LIPC).

[6] ISO/IEC 11404:1996, Information technology { Programming languages, their environments
and system software interfaces { Language-independent datatypes, (LID).

[7] ISO/IEC 8652:1995, Information technology { Programming languages { Ada.

[8] ISO/IEC 13813:1998, Information technology { Programming languages { Generic packages
of real and complex type declarations and basic operations for Ada (including vector and
matrix types).

[9] ISO/IEC 13814:1998, Information technology { Programming languages { Generic package
of complex elementary functions for Ada.

[10] ISO 8485:1989, Programming languages { APL.

[11] ISO/IEC DIS 13751, Information technology { Programming languages, their environments
and system software interfaces { Programming language APL, extended, 1999.

[12] ISO/IEC 10279:1991, Information technology { Programming languages { Full BASIC. (Es-
sentially an endorsement of ANSI X3.113-1987 (R1998) [36].)

[13] ISO/IEC 9899:1999, Programming languages { C.

[14] ISO/IEC 14882:1998, Programming languages { C++.

[15] ISO 1989:1985, Programming languages { COBOL. (Endorsement of ANSI X3.23-l985
(R1991) [37].) Currently under revision (1998).

[16] ISO/IEC 16262:1998, Information technology - ECMAScript language speci�cation.

[17] ISO/IEC 15145:1997, Information technology { Programming languages { FORTH. (Also:
ANSI X3.215-1994.)

D. Bibliography 75

ISO/IEC WD 10967-3.1:2000(E) Working draft

[18] ISO/IEC 1539-1:1997, Information technology { Programming languages { Fortran - Part 1:
Base language.

[19] ISO/IEC TR 15580:1998, Information technology { Programming languages { Fortran {
Floating-point exception handling.

[20] ISO/IEC 13816:1997, Information technology { Programming languages, their environments
and system software interfaces { Programming language ISLISP.

[21] ISO/IEC 10514-1:1996, Information technology { Programming languages { Part 1: Modula-
2, Base Language.

[22] ISO/IEC 10514-2:1998, Information technology { Programming languages { Part 2: Generics
Modula-2.

[23] ISO 7185:1990, Information technology { Programming languages { Pascal.

[24] ISO/IEC 10206:1991, Information technology { Programming languages { Extended Pascal.

[25] ISO 6160:1979, Programming languages { PL/I. (Endorsement of ANSI X3.53-l976 (R1998)
[39].)

[26] ISO/IEC 6522:1992, Information technology { Programming languages { PL/I general-
purpose subset. (Also: ANSI X3.74-1987 (R1998).)

[27] ISO/IEC 13211-1:1995, Information technology { Programming languages { Prolog { Part 1:
General core.

[28] ISO/IEC 9075:1992, Information technology { Database languages { SQL.

[29] ISO/IEC 8824-1:1995, Information technology { Abstract Syntax Notation One (ASN.1) {
Part 1: Speci�cation of basic notation.

[30] ISO/IEC 9001:1994, Quality systems { Model for quality assurance in design, development,
production, installation and servicing.

[31] ISO/IEC 9126:1991, Information technology { Software product evaluation { Quality charac-
teristics and guidelines for their use.

[32] ISO/IEC 12119:1994, Information technology { Software packages { Quality requirements and
testing.

[33] ISO/IEC 14598-1:1999, Information technology { Software product evaluation { Part 1: Gen-
eral overview.

76 Bibliography

Working draft ISO/IEC WD 10967-3.1:2000(E)

National standards documents

[34] ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

[35] ANSI/IEEE Standard 854-1987, IEEE Standard for Radix-Independent Floating-Point Arith-
metic.

[36] ANSI X3.113-1987 (R1998), Information technology { Programming languages { Full BASIC.

[37] ANSI X3.23-l985 (R1991), Programming languages { COBOL.

[38] ANSI X3.226-1994, Information Technology { Programming Language { Common Lisp.

[39] ANSI X3.53-l976 (R1998), Programming languages { PL/I.

[40] ANSI/IEEE 1178-1990, IEEE Standard for the Scheme Programming Language.

[41] ANSI/NCITS 319-1998, Information Technology { Programming Languages { Smalltalk.

Books, articles, and other documents

[42] J. S. Squire (ed), Ada Letters, vol. XI, No. 7, ACM Press (1991).

[43] M. Abramowitz and I. Stegun (eds), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Tenth Printing, 1972, Superintendent of Documents, U.S.
Government Printing OÆce, Washington, D.C. 20402.

[44] J. Du Croz and M. Pont, The Development of a Floating-Point Validation Package, NAG
Newsletter, No. 3, 1984.

[45] J. W. Demmel and X. Li, Faster Numerical Algorithms via Exception Handling, 11th Inter-
national Symposium on Computer Arithmetic, Winsor, Ontario, June 29 - July 2, 1993.

[46] D. Goldberg, What Every Computer Scientist Should Know about Floating-Point Arithmetic.
ACM Computing Surveys, Vol. 23, No. 1, March 1991.

[47] J. R. Hauser, Handling Floating-Point Exceptions in Numeric Programs. ACM Transactions
on Programming Languages and Systems, Vol. 18, No. 2, March 1986, Pages 139-174.

[48] W. Kahan, Branch Cuts for Complex Elementary Functions, or Much Ado about Nothing's
Sign Bit, Chapter 7 in The State of the Art in Numerical Analysis ed. by M Powell and A
Iserles (1987) Oxford.

[49] W. Kahan, Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point
Arithmetic, Panel Discussion of Floating-Point Past, Present and Future, May 23, 1995, in
a series of San Francisco Bay Area Computer Historical Perspectives, sponsored by SUN
Microsystems Inc.

[50] U. Kulisch and W. L. Miranker, Computer Arithmetic in Theory and Practice, Academic
Press, 1981.

[51] U. Kulisch and W. L. Miranker (eds), A New Approach to Scienti�c Computation, Academic
Press, 1983.

[52] D. C. Sorenson and P. T. P. Tang, On the Orthogonality of Eigenvectors Computed by Divide-
and-Conquer Techniques, SIAM Journal of Numerical Analysis, Vol. 28, No. 6, p. 1760,
algorithm 5.3.

D. Bibliography 77

ISO/IEC WD 10967-3.1:2000(E) Working draft

[53] Floating-Point C Extensions in Technical Report Numerical C Extensions Committee X3J11,
April 1995, SC22/WG14 N403, X3J11/95-004.

[54] David M. Gay, Correctly Rounded Binary-Decimal and Decimal-Binary Conversions, AT&T
Bell Laboratories, Numerical Analysis Manuscript 90-10, November 1990.

[55] James Gosling, Bill Joy, Guy Steele, The Java Language Speci�cation.

[56] Simon Peyton Jones et al., Report on the programming language Haskell 98, February 1999.

[57] Simon Peyton Jones et al., Standard libraries for the Haskell 98 programming language, Febru-
ary 1999.

[58] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen, The De�nition of Standard
ML (Revised), The MIT Press, 1997, ISBN: 0-262-63181-4.

78 Bibliography

